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Machine Learning II:
SS 19

Visvanathan Ramesh

Model-based Design & Simulations for ML

*With contributions from numerous collaborators in over 25 years.

*Slide source credits: U Washington, Stanford U. (1994/1995), European Conference on Computer Vision 2010
presentation from Siemens AG (publically released industrial perspective), Jian-Bin-Huang and Joerg Bornschein, Patel et
al (2015) (deep learning), BENT-Frankfurt team (2011-2015).




GOETHE @4

UNIVERSITAT

AAAAAAAAAAAAAAA

Today’s Class:
Systems Engineering for Vision &
Simulation for Modern ML
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System engineering example we will discuss in class:
— Greiffenhagen et al (2001)
— Simulation for Design - S. Veerasavarappu et al (2013-17), Hess et al
(2016), Weis et al (2015-17)
Overall theme in Model-driven Design:
(Context, Task,Performance) - Hw plus Sw configuration (hw + programs plus
parameters)
— Context, Task, Performance
— What is context — e.g. Derek hoeim's Book (2015)
— Task - estimation of world state (or aspects of it)
— Performance - bias, variance , accuracy vs speed tradeoff
— What is a Program (Inference Engine)?

— Program as filters and combinations (feedforward, deep, feedback and
recurrent) (ML Literature, Bio-inspired vision literature)

— Program Design — Model based vs Data Driven, or Hybrid combinations

— Classic dissertations: Model based design - (Mann, 1996 + Ramesh, 1995)
— Graphical model illustration using VSCP
— Inference Aggregation Indexing , prediction, verify loops , Hierarchical

—_What about Performance Characterization? _(Ramesh, 1995)
Visvanathan Ramesh , July 2019
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“Challenge in the context of
System . . ) .
Requirements Apph'catlon Com_put_er Vision s in
Priors ambiguity and uncertainty in
models covering Diverse

Contexts”

Automatic
Programming _ _ \ _
W

Performance

Performance
characteristics

Analysis +

System
Optimization

Configuration
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Input Space specification:

Object-oriented Graphical Models describing generative models for video data given
scene variables

Scene variables include:

— Scene Geometry (static geometry), Material distribution, Environmental Conditions (e.g. weather,
indoor, outdoor), Object types in the scene, their shape, dynamics, Illumination distribution (e.g.
source positions, dynamics), Camera (Sensor) positions, orientations in the world, projection
geometry, photometric model

Task Specification:

Desired subset of scene parameters to be estimated from video (for example):
— Counts of object

— Object types, Object tracks, Object geometry, Object behavior

— Analysis of Groups of objects

— lllumination/weather state

Performance Requirements:

For each task: probability of error (e.g. p_miss, p_false in two class situations)
Accuracy in Parameter estimates (tolerances)

Graceful degradation, Self-Diagnosis

Computational speed

Time delay to respond (i.e for computation of results), etc.

Visvanathan Ramesh , July 2019
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Modularity in Specifications:

— Nested model spaces to allow for various degrees of approximations in the model
space

Scalability of Design Solutions:

— Ability to derive families of solutions where the complexity of system is scaled
according to complexity of tasks, input space approximations.

Quantifiability:
— Ability to provide quantitative performance models of system designed as a function of
Graphical Model parameters and tuning parameters/constants of system.
Computational Complexity tradeoff vs Accuracy:

— Ability to quantify computational complexity of system as function of OODBN
parameters.

— Use this quantification to provide tradeoffs (e.g.) Reduce accuracy for reducing
computation.

Modular Extensibility:

— Design should allow for modular extensibility when input spaces in one application
differ from another in a minor way.

Mapping to Hardware:

— Design should allow ease of mapping to target hw. (could address this as a separate
phase. (i.e). Construct designs for general purpose architectures and then have a
systematic approach to translation of design to hw.

Visvanathan Ramesh , July 2019



GOETHE g

UNIVE RSITAT

Paradigms for Design ~ DNVERAY

* Model Based Design

— Generative Models — I1.e. Probabillistic Graphical
Models (Interpretation is estimation of world
state given observations. Generative model
uses a likelihood model for sensor observations
(physics-based) and Prior model.)

» Data Driven Machine Learning

— Neural Networks

— Boosting, Support Vector Machines, etc.
» Hybrid designs (combination)

Visvanathan Ramesh , July 2019
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* Formalize domain (i.e. generative) models for
application contexts

* Formalize system task requirement specification
« Translate requirements to formal generative models

* Link generative models to approximate inference
engines (i.e. module and system implementations)

« Performance characterization of design (white box
analysis)
* Model Validation and Iteration of Design (comparison of

empirical and theoretical predictions and model/design
Improvement)

Visvanathan Ramesh , July 2019
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(C, T, P) » Program mappings UNIVERSITAT

Contexts

Tasks
Performance
quirements

Space of HW + SW Design
Configurations

“(Contexts, Task and Performance Requirements) - to (System Designs)”
Extension to new design settings — via re-use of context elements and identification of gaps in
models
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specs/requirements} -—> {specific hypotheses generators} + {reasoning / optimization engine}




Visual Cognition: Hierarchical coeTHE S

Indexing + Iterative Estimation SRR
@ Sensor
Single/Multiple Control
Parameters
Streams
Statistics of SEIES
patterns Hypotheses
Generation
Update Sensor Reasoning/
Reflexive Vision: 90 Scene Knowledge Control Optimization
Hypothesis Models. Fusion Strategy

Generation Priors. Rules

Online Learning

Control & Action
i Objects,
Atomic Objects Reflective Events, Memory

Event Reasoning/Detailed Representation
Hypotheses Estimation

Uncertainties
Semantics




Computational Neuroscientist’s
View: (C. Von C{er Malsburg, 2011) UNIVERSITAT
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Inputimage Rank Oder llluminaiton com pensation Morm RGE Background Subtraction Shadow Detection

Visvanathan Ramesh , July 2019
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U
V=

" Classic ML
———=1] | Annotations : Performance
- Image/Data gl Planning |— Approaches Al Experiments b— Evaition

Refine:
Modify
Parameters

Design Work flow — From Skeleton Designs to performance
evaluation
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 Model Based Design

« Data Driven Design

* Hybrid Approach : Considering both model and
data driven designs
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1. Model Based Design

DATA

l

Build model Infer hidden quantities Criticize model
Mbtures and moed-membershipmodels Markovcham Monte Carlo, =< Performance on a task
time-series modek, generaleed inear modals, variational inference, prediction on unseen data,
factor models, Bayesian nonparametrics Laplace approxmat ion posterior predictive checks
| l
Apply model
Predictive systems,
data exploration,
data summarzation

REVISE MODEL

General setup of Model based methods.
Image Source: [6], Blel (2015)
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Classic Example for Model Based Design

- ——————

g TEXT HYPOTHESIS S

\
1
: I VERIFICATION '
1 | |
i [ ——
: ! | | Detected &
v | statistical Tests Verified
: I || Text
| : I
! |
' " I
S N iRy e e i e L 2
j .s kground Colo Text color X ‘o — —— ™\
' ackgroun r ext
: q,_; : f [ Multi-scale region analysis ] :
! 1
' . i I
' 3D text fragment ! I
| Chowponi D> T =1
|
I " : I
' A | | TEXT HYPOTHESIS :
; SR — S maelomar . —mmmme | SN GENERATION s

Left: Bayesian Network for Text Appearance in an Image.
System Design (See [3])
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2. Data Driven Design

24x24x1 16X 16x48

: 1x1x128 L 1x1x128

U

Ix1x37

L]
1x1x63

t

. Case-insensitive | Case-sensitive
Characters - Characters

Convolutional Neural Networks. The method uses four CNNs. These share the
first two layers, computing "generic" character features and terminate in
layers specialized into text/no-text classification, case-insensitive and case-
sensitive character classification, and bigram classification. Each connection
between feature maps consists of convolutions with maxout groups. Figure
and caption from [7]
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Combine strengths of model-based thinking as well as
data driven machine learning.

Several feature maps are extracted based on several
feature extraction kernels.

This Is followed by a deep neural network architecture or
any data driven architecture for the purpose of
classification and recognition.

Visvanathan Ramesh , July 2019
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Simulating Worlds
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Contextual Models: GOETHE X
Simulation from Generative Models UNIVERSITAT

« Camera geometry -- projection model (orthographic, perspective), camera blur, lens
distortion, intrinsic parameters, extrinsic parameters.

« Camera - gray level transformation model of camera pipeline
« Shape representation (surface/contour, volume)

« Material property (brdf)

« Appearance (texture map) dictionary

« Graphics pipeline parameters
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Simulation for Systems Design, GOETHE 43k
Analysis and Evaluation S kA

* Groundtruth collection seems to be an obstacle for Supervised learning based
vision systems.

 Major advances in Computer Graphics (CG) field has spurred a renewed recent
interest to utilize CG for CV.

(a) 2001 (b) 2003 B (c) 2005

(d) 2006 o (e) 2013 - f) 2015

Figure 1-1: Evolution of Graphics in Video games from 2001 to 2016
Visvanathan Ramesh , July 2019
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Lambertian Path traced (130 spp)

Rain

Visvanathan Ramesh , July 2019
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Transfer and Domain shift NAVERSITAT
Virtual world Rendering Simulated Hypothesis Performance
models c data (Sp) A
P(6u) Dy ’ o
Space of - Real world -
VHW + ve ------—---- -> VD Hypotheses > VS testing data > VA

Real world .~ camera Real Hypothesis Performance
Models N G . Data (52) °
P(6y) i e - -7 D, T ror

« No free lunch in the selection of P and G for data simulation processes.
* In principle, V6,, and VG impact the magnitudes of VD, V'S, and V' A.

« What is the impact of G on AA?
* Real time Photo-realism vs Expensive physics-realism?
« What is the impact of parameters of P(8,,) on AA?
« How far can we go with an arbitrary scene generative model?
« Can unsupervised generative learning from target real data help?

« However, one can bypass these issues by simply adding some real samples to
simulated data.
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Why, when, and how to simulate data

Simulation Software Workflow

Learning from Virtual Worlds
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o Instances

Modalities
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Estimates

v—@o— Features

Feature
Extract

Annotations




Overview ML workflows
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Confext

Instances

Modalities

Task Estimates

‘L\

'—@4— Features

y

Annotation//

Human/Controlled Experiment

Annotations

Feature
Extract
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Human annotation is expensive, time-consuming, may
contain errors

Controlled experiments may be infeasible

Sensed/captured instances may only be a subset of
probable situations/scenarios
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The world we sense is governed by parameters:

° Instances

ML wants to estimate a subset of those: Task

This subset may be influenced/modulated by other variables:
Context
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Simulation Design ONIVERSITAT

Oy : world“-parameters:

Geometric
* Object positions, 3d-shapes, spatial relations
Photometric
- Materials and reflectances, scene lighting, atmospheric effects
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®,: process‘“-parameters:
P

An instance of the world is a specific configuration of entities,
arranged according to a process P

It‘'s parameters O, might include physical, social, or other laws that are
imposed on entities
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Oc: “sensing“-parameters:
S

Describe sensor-specific parameters

» Transfer-function of physical entities to digital ones (i.e. photon->pixel-value)
* Noise

* Range
« Other characteristics (i.e. lense distortions)
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To generate useful synthetic data, we have to:
 Model parameters of interest (task)
 Model influencing parameters (context)
 Be able to synthesize needed modalities (sensor)
 Be able to generate annotations
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Instances @ Modalities

Synthetic
Modalities

Simulator

Simulatici__/
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@_.& Instances *’@—’ Modalities

Gap?

Synthetic
Modalities

Simulator Simulation/
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In principle, any quantity of interest can be simulated

Today‘s session is focused on simulation for
Computer-Vision related tasks
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Examples | | | corrir &3
Traffic sign map integration UNIVERSITAT

Task
 Integrate noisy measurements (GPS-Coordinates) into a map

Parameters

° @W
— Geometric: CAD-desc of streets, GPS-coordinates of TS

° @S
— Sensor uncertainty
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Possible source of (unlimited) situation examples — Photorealistic RGB images
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Task
* Object (ball, robot, line, background) classification from image patches

Parameters

o Oy
— Geometric: CAD-desc of ball, robot, playing field
— Photometric: textures, reflectances, external lighting (context)

¢ 0Op
— Objects located inside field-border
— Governed by gravity (everything on ground-plane)
— Robots are articulated

o O
— Sensor resolution, possible exposure times, noise characteristics

— Extrinsic (position,angle) and intrinsic (focal length, central point, distortion)
parameters

Visvanathan Ramesh , July, 2019
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Possible source of (unlimited) situation examples — Optical flow
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Possible source of (unlimited) situation examples — 2D/3D Simulations from map data

.II
\
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Task
* Detect motion anomalies -> simulate " 'normal® image motions
Parameters
e O
— Geometric: CAD-desc of automotive scenes (cars, streets, buildings, etc.)
— Photometric: textures, reflectances, external lighting (context)
e Op
— Obiject locations (buildings on side of street, cars on street, etc.)
— Governed by gravity (everything on ground-plane)
— Object motions (other cars, people)
e Op
— Sensor resolution, possible exposure times, noise characteristics

— Extrinsic (position,angle) and intrinsic (focal length, central point,
distortion) parameters

Visvanathan Ramesh , July, 2019
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Possible source of (unlimited) situation examples — 2D projections

.
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Task
» Calculate likelihood of detected blob-pairs (only geometric)

Parameters
o Oy
— Geometric: CAD-desc of cars
° @P
— Object locations (other cars)
— Governed by gravity (everything on ground-plane)
o O
— Sensor resolution

— Extrinsic (position,angle) and intrinsic (focal length, central point,
distortion) parameters
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Possible source of (unlimited) situation examples — Photorealistic RGB images

Labels for each
patch

Visvanathan Ramesh , July, 2019
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Possible source of (unlimited) situation examples — Photorealistic RGB images

Visvanathan Ramesh , July, 2019
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Task
« Detect and recognize traffic signs

Parameters

o Oy
— Geometric: CAD-desc of automotive scenes (traffic signs, streets, buildings,
etc.)
— Photometric: textures, reflectances, external lighting (context)

e Op
— Object locations (traffic-signs on poles, buildings on side of street, cars on
street, etc.)

— Governed by gravity (everything on ground-plane)
¢ Op
— Sensor resolution, possible exposure times, noise characteristics

— Extrinsic (position,angle) and intrinsic (focal length, central point, distortion)
parameters

Visvanathan Ramesh , July 2019
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Possible source of (unlimited) situation examples - Depth data
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What is your scene made up of?

Geometric Parameters Photometric Parameters | Process Parameters

Objects (Meshes) and Material Object poses
Bounds

Lighting Object relations

Temporal aspects
(movements, speeds)
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Is Simulation Always Helpful? ONIVERSITAT

Does your simulation require very accurate complex physics? (Simulating Fluids /
Simulating Infrared)

Does your scene require extensive diversity? (Facial Expressions)
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1. Engines: RealTime VS. Raytrace
2. Scene Content

3. Simulation

Setting Up The Environment
Coding

Rendering

Capturing Segmentation

WD
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Engines: RealTime VS. Raytrace

Raytrace

RealTime

Highest photorealism

High render time

Moderate photorealism

Rendering up to 120 frames per
second

R



GOETHE @a

UNIVERSITAT

FRANKFURT AM MAIN

Engines: RealTime VS. Raytrace

Raytrace RealTime
b CRY=NGINZ
o | @ & unity
CINEMA 4D BLENDER @
™  AUTODESK MAYA UNREAL
ENGINE

<A NVIDIA. OPTIX' A

EEEEEEEEEE
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Scene Contents

1.  Virtual Environment

Models, Material, Animation
Lighting

Process for model placement

R

Actor behaviour

2. Observer (Camera)

1. Camera Model
2.  (Post Processing)
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Simulated Venue

{levalPlayfieldSimulation_inProgress (Persistent)
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Models

Modelling
* Designing 3D Meshes

« Making texture placement available on the mesh (UV-Unwrap)
* Animation

Alternative source: Online Repositories (BlendSwap, Blendermarket,
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Applying Texture
UV Unwrap

5 Blender® [C:\Users\ A  stableStandl blend] - o x
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Texture / -
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Albedo Normal

Roughness

S

SUBSTANCE

Metallic
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Material (PBR)
UE4 o tuacir

& Metallic
@ Specular

@ Roughness

O Emissive Color

@ MNormal
O World Position Offset

Or Ambient Occlusion

Or Pixel Depth Offset

Visvanathan Ramesh , July 2019
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Material (PBR)

Blender

Multiscatter GGX
(K] color |
Color :
Linear Subsurface Radius ¥
Repea
S Non-Color Data

Single Image T

Flat

Repeat

Single Image

=] closs |

Non-Color Data
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L ]
e
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= Tangent Space
Linear @ i = I

Non-Color Data

Flat
Repeat
Linear
Single Image
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Repeat

Single Image

Visvanathan Ramesh , July 2019



Simulation
Coding

Set software mechanisms
and procedures

* Object Placement (Stochastic
Scene Generation)

 Lighting Changes

» Script Activations
(Rendering, Segmentation)

=
Positioning of Ball and RobotCamera

=

GOETHE @
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If Ball is visible to camera

Visvanathan Ramesh , July 2019
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Simulation
Rendering

Pixel Buffer Access

* Inherit UECameraComponent to gain access to pixel buffers
* Non trivial due to blackbox-ish rendering pipeline
* Fast

Screenshots

» Screenshot process is asynchronous! Need to freeze frames
« Slow
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Simulation
Capture Segmentation

Shader
* Propagating render pipeline properties to a shader to access it
(Multi Condition: Depth, Optical Flow, Objects)
Raytracing

» Sending rays through all pixels in the camera viewport and listen to the first object hit by the ray
(Slow and objects only)

Post Processing Material

» Exploiting a engine build-in post process shader highlighting previously tagged objects
(Fast, but error prone due to engine internals such as Antialising! Objects only)

Visvanathan Ramesh , July 2019
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Capture Segmentation corrne
Renderpass - Blender UNIVERSITAT




Capture Segmentation

Raytrace — UE4

for (int y = 85 y <
for (int x = @; x <

20 ScreenPosition(x, y);

Worldorigin, WorldDirection;

DeprojectScreenToWorld(Player, ScreenPosition, WorldOrigin, WorldDirection);

// Cast ray from pixel

boel bHit = World-:LineTraceSingleByChannel(HitResult, Worldorigin, Worldorigin + WorldDirection * HitResultTraceDistance, TraceChannel, CollisionQueryParams);

Al * Actor = NULL;
if (bHit) {
Actor = HitResult.GetActor();
if (Actor != NULL) {

bool found = false;

for (int32 i =8; i < n

if [i] == Actor) {

String IntAsString = FString::FromInt(i + 1);
outputStringMask += IntasString + " "5

3 iH) {

counter++;
found = true;
break;

¥

T
if (!found) {
outputStringMask += "@ ";

1
¥
else {
outputStringMask += "8 ";
¥
i
else {
outputStringMask += "a ™;
¥

outputStringMask = outputStringMask + "Wwn";
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Visvanathan Ramesh , July, 2019
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Existing simulation frameworks
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Usually provide means to
» User-control objects (cars, drones, etc.)
* Control environment, weather, illumination
* Extract most common modalities

— Rendered images
— Depth-maps
— Semantic segmentation
* Some provide "game-Al“ (e.g. cars, NPCs)
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OpenSource: Microsoft - AirSim Dok o A
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OpenSource: CARLA (2017) ONIVERSITAT

Visvanathan Ramesh , July 2019
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GOETHE 4k
OpenSource: Morse Robot Sim ONIVERSITAT
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GTA — Playing for data ONIVERSITAT
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10x speed
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NVIDIA (2018) UNIVERSITAT

Visvanathan Ramesh , July 2019
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Baidu — Apollo Simulator IR

Scenarios Execution Modes Automatic Grading System 3D Visualization

Visvanathan Ramesh , July 2019
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And many many others

Just to list a few more:

Uber, Waimo, Daimler, Siemens (Tass), AutonoVi-Sim, VIRES, rFpro, Cogna, SynCity,
Simulated datasets: Virtual KITTI, Synthia
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Evaluating Simulations N ERSTAT

Does your simulation fit your case?
« Matching of color spaces

« Matching of corner case conditions
(i.e. extreme lighting)

* How much of your problem space is covered by the simulation?




Evaluating Simulations
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Instances Modalities

N

Gap?

. 4

. Synthetic
Modalities

Simulator

Simulati%____/




Training on Simulated
Advantages / Disadvantages
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Data

Pro

Con

Source of (unlimited) labeled Obvious shifts in environment

data without human
annotation efford

Full control over the environment

from simulated to real and
subsequently mismatches in
learned statistics when
applied to the real world
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“Rendering Fidelity” ONIVERSITAT

Playing for Data: https://download.visinf.tu-darmstadt.de/data/from_games/

Visvanathan Ramesh , July, 2019



Domain Adaptation
Fine Tuning UNIVERSITAT
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Use additional (possibly human) labeled data from the given target domain to fine
tune your model towards target space conditions

ZE%F

E2 N ¥ I
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GAN — Generative Adversarial Network UNIVERSITAT
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Domain Adaptation corrne §3
Other Methods: EANERRITL

Adversarial Methods

e Exploiting Local Feature Patterns for Unsupervised Domain Adaptation [AAAI2019]

e Domain Confusion with Self Ensembling for Unsupervised Adaptation [arXiv 10 Oct 2018]

e |mproving Adversarial Discriminative Domain Adaptation [arXiv 10 Sep 2018]

e M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning [arXiv 6 Jul 2018] [Pytorch(official)]
e Augmented Cyclic Adversarial Learning for Domain Adaptation [arXiv 1 Jul 2018]

e Factorized Adversarial Networks for Unsupervised Domain Adaptation [arXiv 4 Jun 2018]

® DiDA: Disentangled Synthesis for Domain Adaptation [arXiv 21 May 2018]

e Unsupervised Domain Adaptation with Adversarial Residual Transform Networks [arXiv 25 Apr 2018]
e Simple Domain Adaptation with Class Prediction Uncertainty Alignment [arXiv 12 Apr 2018]

® Causal Generative Domain Adaptation Networks [arXiv 28 Jun 2018]

e Conditional Adversarial Domain Adaptation [arXiv 10 Feb 2018 ]

® Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation
Maximization [ECCV2018]

e |earning Semantic Representations for Unsupervised Domain Adaptation [ICML2018] [TensorFlow(Official)]

® CyCADA: Cycle-Consistent Adversarial Domain Adaptation [ICML2018] [Pytorch(official)]

® From source to target and back: Symmetric Bi-Directional Adaptive GAN [CVPR2018] [Keras(Official)] [Pytorch]
e Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation [CVPR2018]

e Maximum Classifier Discrepancy for Unsupervised Domain Adaptation [CVPR2018] [Pytorch(Official)]

e Domain Generalization with Adversarial Feature Learning [CVPR2018]

e Adversarial Feature Augmentation for Unsupervised Domain Adaptation [CVPR2018] [TensorFlow(Official)]

® Duplex Generative Adversarial Network for Unsupervised Domain Adaptation [CVPR2018] [Pytorch(Official)]

® Generate To Adapt: Aligning Domains using Generative Adversarial Networks [CVPR2018] [Pytorch(Official)]

® Image to Image Translation for Domain Adaptation [CVPR2018]
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Computer Vision lectures (V. Ramesh)

e Vision as Inverse Graphics
« Vision as Bayesian Estimation
o History & Examples
e MRF’s for Image Segmentation (Geman & Geman)

« Bayesian methods for various vision sub-tasks - detection, tracking, recognition,
motion analysis, etc. (various authors)

« Conditional Random Fields (Kumar et al)
e Pattern Grammars for Vision (Zhu, Mumford)
 Probabilistic Programming for Vision (Kulkarni et al)

« Modern Practice in ML for Vision

« Deep CNN’s, Variational Auto-encoders, Generative Adversarial Networks
e Link between modern ML and Bayesian viewpoints

Visvanathan Ramesh , July 2019
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