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- Why, when, and how to simulate data
« Simulation Software Workflow

 Learning from Virtual Worlds
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Overview ML workflows
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Why Simulation

« Human annotation is expensive, time-consuming, may
contain errors

 Controlled experiments may be infeasible

» Sensed/captured instances may only be a subset of
probable situations/scenarios



Simulation Design

The world we sense is governed by parameters:

@ w e Instances

ML wants to estimate a subset of those: Task
This subset may be influenced/modulated by other variables: Context




Simulation Design

Oy :  “world“-parameters:

« Geometric
> Object positions, 3d-shapes, spatial relations
« Photometric
» Materials and reflectances, scene lighting, atmospheric effects
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Simulation Design

®,: " “process“-parameters:
p

« An instance of the world is a specific configuration of entities,
arranged according to a process P

 It's parameters @, might include physical, social, or other laws that are
imposed on entities



Simulation Design

Og: " “sensing“-parameters:

 Describe sensor-specific parameters
= Transfer-function of physical entities to digital ones (i.e. photon->pixel-value)
= Noise
= Range
= QOther characteristics (i.e. lense distortions)



Simulation Design

To generate useful synthetic data, we have to:
» Model parameters of interest (task)
« Model influencing parameters (context)

 Be able to synthesize needed modalities (sensor)
- Be able to generate annotations
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Why build Simulations?

In principle, any quantity of interest can be simulated

Today's session is focused on simulation for
Computer-Vision related tasks
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Why build Simulations?
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Examples
Traffic sigh map integration

« Task
» Integrate noisy measurements (GPS-Coordinates) into a map
o Parameters
s Oy
« Geometric: CAD-desc of streets, GPS-coordinates of TS
o @S
+ Sensor uncertainty
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Why build Simulations?

« Possible source of (unlimited) situation examples — Photorealistic RGB images




Examples
RoboCup

« Task
= Object (ball, robot, line, background) classification from image patches
« Parameters
5 Oy
Geometric: CAD-desc of ball, robot, playing field
Photometric: textures, reflectances, external lighting (context)
s Op
Objects located inside field-border
Governed by gravity (everything on ground-plane)
Robots are articulated
s Qg
Sensor resolution, possible exposure times, noise characteristics
Extrinsic (position,angle) and intrinsic (focal length, central point, distortion) parameters
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Why build Simulations?

« Possible source of (unlimited) situation examples — Optical flow
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Why build Simulations?

« Possible source of (unlimited) situation examples — 2D/3D Simulations from map data
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Examples
Brakelight

o Task
= Detect motion anomalies -> simulate * "normal® image motions
« Parameters
s Oy
Geometric: CAD-desc of automotive scenes (cars, streets, buildings, etc.)
Photometric: textures, reflectances, external lighting (context)

s Op
Object locations (buildings on side of street, cars on street, etc.)
Governed by gravity (everything on ground-plane)
Object motions (other cars, people)
s Op
Sensor resolution, possible exposure times, noise characteristics
Extrinsic (position,angle) and intrinsic (focal length, central point, distortion) parameters



Why build Simulations?

« Possible source of (unlimited) situation examples — 2D projections
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Examples
Brakelight

- Task
= Calculate likelihood of detected blob-pairs (only geometric)
e Parameters
s Oy
+  Geometric: CAD-desc of cars
s Op
* Object locations (other cars)
+ Governed by gravity (everything on ground-plane)
o Qg
» Sensor resolution

- Extrinsic (position,angle) and intrinsic (focal length, central point, distortion)
parameters



Why build Simulations?

« Possible source of (unlimited) situation examples — Photorealistic RGB images

Labels for each
patch




Why build Simulations?

« Possible source of (unlimited) situation examples — Photorealistic RGB images




Examples
Trafficsigns

« Task
= Detect and recognize traffic signs
e Parameters
5 Oy
Geometric: CAD-desc of automotive scenes (traffic signs, streets, buildings, etc.)
Photometric: textures, reflectances, external lighting (context)
s Op
Object locations (traffic-signs on poles, buildings on side of street, cars on street, etc.)
Governed by gravity (everything on ground-plane)
s Op
Sensor resolution, possible exposure times, noise characteristics
Extrinsic (position,angle) and intrinsic (focal length, central point, distortion) parameters
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Why build Simulations?

« Possible source of (unhmlted) s1tuat10n examples — Depth data




Translation to 3D Simulation Engines

» What is your scene made up of?

Geometric Parameters | Photometric Process Parameters
Parameters

Objects (Meshes) and Material Object poses
Bounds

Lighting Object relations

Temporal aspects
(movements, speeds)



Is Simulation Always Helpful?

» Does your simulation require very accurate
complex physics? (Simulating Fluids /
Simulating Infrared)

» Does your scene require extensive diversity?
(Facial Expressions)



Software Workflow

1. Engines: RealTime VS. Raytrace
2. Scene Content

3. Simulation

Setting Up The Environment
Coding

Rendering

Capturing Segmentation

@b



Engines: RealTime VS. Raytrace

Raytrace RealTime

- Highest photorealism « Moderate photorealism

« Rendering up to 120 frames per

« High render time
second




Engines: RealTime VS. Raytrace
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Scene Contents

1. Virtual Environment

Models, Material, Animation
Lighting

Process for model placement
Actor behaviour

@b F

2. Observer (Camera)

1. Camera Model
2. (Post Processing)



Real Venue




Simulated Venue

(Sevel Pl ayfieldBimulation_inProgress (Persistent)




Models

« Modelling
= Designing 3D Meshes

= Making texture placement available on the mesh (UV-Unwrap)

= Animation

« Alternative source: Online Repositories (BlendSwap, Blendermarket, ...)
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Applying Texture
uv Unwrap

45 Blender® [C:\Users\
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Texture /

Albedo Normal
Height Roughness

S

SUBSTANCE

Metallic




Material

Macro Texture Variation

PBR

Reduce Macro Contrast

»
»
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" ArtificialGrass

Base Color
Metallic
Specular
Roughness

Emissive Color

Mormal

World Position Offset

O Ambient Occlusion

Or Pixel Depth Offset




Material (PBR
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Simulation
Coding

 Set software mechanisms
and procedures

Positioning of Ball and RobotCamera

If Ball is visible to camera

> Object Placement
(Stochastic Scene
Generation)

= Lighting Changes

= Script Activations
(Rendering,
Segmentation)




Simulation
Rendering

 Pixel Buffer Access
> Inherit UECameraComponent to gain access to pixel buffers
s Non trivial due to blackbox-ish rendering pipeline
o Fast

« Screenshots
= Screenshot process is asynchronous! Need to freeze frames
= Slow



Simulation
Capture Segmentation

2

= Propagating render pipeline properties to a shader to access it
(Multi Condition: Depth, Optical Flow, Objects)
« Raytracing
= Sending rays through all pixels in the camera viewport and listen to the first object hit by the ray
(Slow and objects only)

o Shader

« Post Processing Material

= Exploiting a engine build-in post process shader highlighting previously tagged objects
(Fast, but error prone due to engine internals such as Antialising! Objects only)



Capture Segmentation
Renderpass - Blender




Capture Segmentation
Raytrace - UE4

for (int y = 8; y < =iz

for (int x = @; x ¢ sizeX; x += stri {

ctor2D ScreenPosition(x, y);
Fvector Worldorigin, WorldDirection;

DeprojectScreenToWorld(Player, ScreenPosition, WorldOrigin, WorldDirection);

// Cast ray from pixel
boel bHit = World-:LineTraceSingleByChannel(HitResult, Worldorigin, Worldorigin + WorldDirection * HitResultTraceDistance, TraceChannel, CollisionQueryParams);

AActor® Actor = NULL;
if (bHit) {
Actor = HitResult.GetActor();
if (Actor != NULL) {
bool found = false;

s; iHe) {

i] == Actor) {

Fstring IntAsstring = FString::FromInt(i + 1);
outputStringMask += IntasString + " "5

counter++;
found = true;
break;

¥

if (!found) {
outputStringMask += "@ ";

1
¥
else {
outputStringMask += "8 ";
¥
i
else {

outputStringMask += "a ™;

¥
i
outputStringMask = outputStringMask + "Wwn";




Capture Segmentation
Post Process Shader- UE4




Existing simulation frameworks

 Usually provide means to
= User-control objects (cars, drones, etc.)
= Control environment, weather, illumination
» Extract most common modalities
- Rendered images
 Depth-maps
- Semantic segmentation

= Some provide ~ game-AI“ (e.g. cars, NPCs)
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OpenSource: Microsoft - AirSim




OpenSource: CARLA (2017




OpenSource: Morse Robot Sim




10x speed



NVIDIA (2018)




Zoox (2017/18)




Baidu - Apollo Simulator

Scenarios

m O

3D Visualization







And many many others

Just to list a few more:

» Uber, Waimo, Daimler, Siemens (Tass),
AutonoVi-Sim, VIRES, rFpro, Cogna, SynCity,
 Simulated datasets: Virtual KITTI, Synthia



Evaluating Simulations

 Does your simulation fit your case?
= Matching of color spaces

= Matching of corner case conditions
(i.e. extreme lighting)

s How much of your problem space is covered by
the simulation?



Evaluating Simulations

Instances Modalities
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Training on Simulated Data
Advantages / Disadvantages

Pro Con
« Source of (unlimited) labeled « Obvious shifts in environment
data without human from simulated to real and
annotation efford subsequently mismatches in
learned statistics when applied
 Full control over the to the real world

environment



Domain Adaptation
Combating Domain Shift
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Domain Adaptation
“Rendering Fidelity”

Playing for Data: https://download.visinf.tu-darmstadt.de/data/from_games/



Domain Adaptation
Fine Tuning

 Use additional (possibly human) labeled data
from the given target domain to fine tune your
model towards target space conditions

EHIEVA




Domain Adaptation
GAN - Generative Adversarial Network

v = —

summer Yosemite — winter Yosemite



Domain Adaptation
Other Methods:

Adversarial Methods

® Exploiting Local Feature Patterns for Unsupervised Domain Adaptation [AAAI2019]

Domain Confusion with Self Ensembling for Unsupervised Adaptation [arXiv 10 Oct 2018]

Improving Adversarial Discriminative Domain Adaptation [arXiv 10 Sep 2018]
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning [arXiv 6 Jul 2018] [Pytorch(official)]
Augmented Cyclic Adversarial Learning for Domain Adaptation [arXiv 1 Jul 2018]

Factorized Adversarial Networks for Unsupervised Domain Adaptation [arXiv 4 Jun 2018]
DiDA: Disentangled Synthesis for Domain Adaptation [arXiv 21 May 2018]
Unsupervised Domain Adaptation with Adversarial Residual Transform Networks [arXiv 25 Apr 2018]

® Simple Domain Adaptation with Class Prediction Uncertainty Alignment [arXiv 12 Apr 2018]
® Causal Generative Domain Adaptation Networks [arXiv 28 Jun 2018]
Conditional Adversarial Domain Adaptation [arXiv 10 Feb 2018 ]

Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation
Maximization [ECCV2018]

Learning Semantic Representations for Unsupervised Domain Adaptation [ICML2018] [TensorFlow(Official)]
CyCADA: Cycle-Consistent Adversarial Domain Adaptation [ICML2018] [Pytorch(official)]
From source to target and back: Symmetric Bi-Directional Adaptive GAN [CVPR2018] [Keras(Official)] [Pytorch]

Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation [CVPR2018]
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation [CVPR2018] [Pytorch(Official)]

Domain Generalization with Adversarial Feature Learning [CVPR2018]

Adversarial Feature Augmentation for Unsupervised Domain Adaptation [CVPR2018] [TensorFlow(Official)]
Duplex Generative Adversarial Network for Unsupervised Domain Adaptation [CVPR2018] [Pytorch(Official)]
® Generate To Adapt: Aligning Domains using Generative Adversarial Networks [CVPR2018] [Pytorch(Official)]
Image to Image Translation for Domain Adaptation [CVPR2018]






