
Simulating Worlds
for machine learning

Authors: Tobias Weis, Timm Hess, and Visvanathan Ramesh



Content

• Why, when, and how to simulate data

• Simulation Software Workflow

• Learning from Virtual Worlds



Overview ML Workflows

World P Instances Sense Modalities



Overview ML Workflows

WorldΘ𝑊 P Instances Sense Modalities

Θ𝑃 Θ𝑆



Overview ML Workflows

WorldΘ𝑊 P Instances Sense Modalities

Feature
Extract

FeaturesLearnEstimates

Annotations

Θ𝑃 Θ𝑆



Overview ML workflows

WorldΘ𝑊 P Instances Sense Modalities

Feature
Extract

FeaturesLearnEstimates

Annotations

Θ𝑃 Θ𝑆

Annotation

Human/Controlled Experiment

Task



Why Simulation

• Human annotation is expensive, time-consuming, may
contain errors

• Controlled experiments may be infeasible

• Sensed/captured instances may only be a subset of
probable situations/scenarios



Simulation Design

The world we sense is governed by parameters:

ML wants to estimate a subset of those: Task

This subset may be influenced/modulated by other variables: Context

WorldΘ𝑊 P Instances

Θ𝑃



Simulation Design

Θ𝑊: ``world“-parameters:

• Geometric

▫ Object positions, 3d-shapes, spatial relations

• Photometric

▫ Materials and reflectances, scene lighting, atmospheric effects



Simulation Design

Θ𝑃: ``process“-parameters:

• An instance of the world is a specific configuration of entities, 
arranged according to a process P

• It‘s parameters Θ𝑃 might include physical, social, or other laws that are

imposed on entities



Simulation Design

Θ𝑆: ``sensing“-parameters:

• Describe sensor-specific parameters
▫ Transfer-function of physical entities to digital ones (i.e. photon->pixel-value)

▫ Noise

▫ Range

▫ Other characteristics (i.e. lense distortions)



Simulation Design

To generate useful synthetic data, we have to:

• Model parameters of interest (task)

• Model influencing parameters (context)

• Be able to synthesize needed modalities (sensor)

• Be able to generate annotations



Simulation Design

World

Θ𝑊

P Instances Sense Modalities

Θ𝑃 Θ𝑆

Simulator Simulation
Synthetic

Modalities



Simulation Design

World

Θ𝑊

P Instances Sense Modalities

Θ𝑃 Θ𝑆

Simulator Simulation
Synthetic

Modalities

Gap
?



Why build Simulations?

In principle, any quantity of interest can be simulated

Today‘s session is focused on simulation for

Computer-Vision related tasks



Why build Simulations?



Examples
Traffic sign map integration

• Task

▫ Integrate noisy measurements (GPS-Coordinates) into a map

• Parameters

▫ Θ𝑊
 Geometric: CAD-desc of streets, GPS-coordinates of TS

▫ Θ𝑆
 Sensor uncertainty



Why build Simulations?
• Possible source of (unlimited) situation examples – Photorealistic RGB images



Examples
RoboCup

• Task
▫ Object (ball, robot, line, background) classification from image patches

• Parameters

▫ Θ𝑊
 Geometric: CAD-desc of ball, robot, playing field
 Photometric: textures, reflectances, external lighting (context)

▫ Θ𝑃
 Objects located inside field-border
 Governed by gravity (everything on ground-plane)
 Robots are articulated

▫ Θ𝑆
 Sensor resolution, possible exposure times, noise characteristics
 Extrinsic (position,angle) and intrinsic (focal length, central point, distortion) parameters



Why build Simulations?
• Possible source of (unlimited) situation examples – Optical flow



Why build Simulations?
• Possible source of (unlimited) situation examples – 2D/3D Simulations from map data



Examples
Brakelight

• Task
▫ Detect motion anomalies -> simulate ``normal“ image motions

• Parameters

▫ Θ𝑊
 Geometric: CAD-desc of automotive scenes (cars, streets, buildings, etc.)
 Photometric: textures, reflectances, external lighting (context)

▫ Θ𝑃
 Object locations (buildings on side of street, cars on street, etc.)
 Governed by gravity (everything on ground-plane)
 Object motions (other cars, people)

▫ Θ𝑃
 Sensor resolution, possible exposure times, noise characteristics
 Extrinsic (position,angle) and intrinsic (focal length, central point, distortion) parameters



Why build Simulations?
• Possible source of (unlimited) situation examples – 2D projections



Examples
Brakelight

• Task

▫ Calculate likelihood of detected blob-pairs (only geometric)

• Parameters

▫ Θ𝑊
 Geometric: CAD-desc of cars

▫ Θ𝑃
 Object locations (other cars)

 Governed by gravity (everything on ground-plane)

▫ Θ𝑆
 Sensor resolution

 Extrinsic (position,angle) and intrinsic (focal length, central point, distortion) 
parameters



Why build Simulations?
• Possible source of (unlimited) situation examples – Photorealistic RGB images

Labels for each
patch



Why build Simulations?
• Possible source of (unlimited) situation examples – Photorealistic RGB images



Examples
Trafficsigns

• Task
▫ Detect and recognize traffic signs

• Parameters

▫ Θ𝑊
 Geometric: CAD-desc of automotive scenes (traffic signs, streets, buildings, etc.)
 Photometric: textures, reflectances, external lighting (context)

▫ Θ𝑃
 Object locations (traffic-signs on poles, buildings on side of street, cars on street, etc.)
 Governed by gravity (everything on ground-plane)

▫ Θ𝑃
 Sensor resolution, possible exposure times, noise characteristics
 Extrinsic (position,angle) and intrinsic (focal length, central point, distortion) parameters



Why build Simulations?
• Possible source of (unlimited) situation examples – Depth data



Translation to 3D Simulation Engines

• What is your scene made up of?

Geometric Parameters Photometric 
Parameters

Process Parameters

Objects (Meshes) and 
Bounds

Material Object poses

Lighting Object relations

Temporal aspects 
(movements, speeds)



Is Simulation Always Helpful?

• Does your simulation require very accurate 
complex physics? (Simulating Fluids / 
Simulating Infrared)

• Does your scene require extensive diversity? 
(Facial Expressions)



Software Workflow

1. Engines: RealTime VS. Raytrace

2. Scene Content

3. Simulation

1. Setting Up The Environment
2. Coding
3. Rendering
4. Capturing Segmentation



Engines: RealTime VS. Raytrace

Raytrace RealTime

• Highest photorealism

• High render time

• Moderate photorealism

• Rendering up to 120 frames per 
second



Engines: RealTime VS. Raytrace

Raytrace RealTime



Scene Contents

1. Virtual Environment

1. Models, Material, Animation

2. Lighting

3. Process for model placement

4. Actor behaviour

2. Observer (Camera)

1. Camera Model

2. (Post Processing)



Real Venue



Simulated Venue



Models

• Modelling

▫ Designing 3D Meshes

▫ Making texture placement available on the mesh (UV-Unwrap)

▫ Animation

• Alternative source: Online Repositories (BlendSwap, Blendermarket, …)



Applying Texture
UV Unwrap



Texture /
Material

Albedo Normal

Height Roughness

Metallic



Material (PBR)
UE4



Material (PBR)
Blender



Simulation
Coding
• Set software mechanisms 

and procedures

▫ Object Placement 

(Stochastic Scene 

Generation)

▫ Lighting Changes

▫ Script Activations 

(Rendering, 

Segmentation)



Simulation
Rendering

• Pixel Buffer Access
▫ Inherit UECameraComponent to gain access to pixel buffers

▫ Non trivial due to blackbox-ish rendering pipeline

▫ Fast

• Screenshots
▫ Screenshot process is asynchronous! Need to freeze frames

▫ Slow



Simulation
Capture Segmentation

• Shader

▫ Propagating render pipeline properties to a shader to access it 

(Multi Condition: Depth, Optical Flow, Objects) 

• Raytracing

▫ Sending rays through all pixels in the camera viewport and listen to the first object hit by the ray
(Slow and objects only)

• Post Processing Material

▫ Exploiting a engine build-in post process shader highlighting previously tagged objects
(Fast, but error prone due to engine internals such as Antialising! Objects only)



Capture Segmentation
Renderpass - Blender



Capture Segmentation
Raytrace – UE4



Capture Segmentation
Post Process Shader– UE4



Existing simulation frameworks

• Usually provide means to
▫ User-control objects (cars, drones, etc.)
▫ Control environment, weather, illumination
▫ Extract most common modalities

 Rendered images
 Depth-maps
 Semantic segmentation

▫ Some provide ``game-AI“ (e.g. cars, NPCs)



OpenSource: Microsoft - AirSim



OpenSource: CARLA (2017)



OpenSource: Morse Robot Sim



GTA – Playing for data



NVIDIA (2018)



Zoox (2017/18)



Baidu – Apollo Simulator



dSpace



And many many others

Just to list a few more: 

• Uber, Waimo, Daimler, Siemens (Tass), 
AutonoVi-Sim, VIRES, rFpro, Cogna, SynCity, 

• Simulated datasets: Virtual KITTI, Synthia



Evaluating Simulations

• Does your simulation fit your case?

▫ Matching of color spaces

▫ Matching of corner case conditions
(i.e. extreme lighting)

▫ How much of your problem space is covered by
the simulation?



Evaluating Simulations

World

Θ𝑊

P Instances Sense Modalities

Θ𝑃 Θ𝑆

Simulator Simulation
Synthetic

Modalities

Gap
?



Training on Simulated Data
Advantages / Disadvantages

Pro Con

• Source of (unlimited) labeled 
data without human 
annotation efford

• Full control over the 
environment

• Obvious shifts in environment 
from simulated to real and 
subsequently mismatches in 
learned statistics when applied 
to the real world



Domain Adaptation
Combating Domain Shift



Domain Adaptation
“Rendering Fidelity”

Playing for Data: https://download.visinf.tu-darmstadt.de/data/from_games/



Domain Adaptation
Fine Tuning

• Use additional (possibly human) labeled data 
from the given target domain to fine tune your 
model towards target space conditions



Domain Adaptation
GAN – Generative Adversarial Network



Domain Adaptation
Other Methods:




