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Abstract

Modern machine learning methods including deep learning have achieved great
success in predictive accuracy for supervised learning tasks, but may still fall short
in giving useful estimates of their predictive uncertainty. Quantifying uncertainty
is especially critical in real-world settings, which often involve input distributions
that are shifted from the training distribution due to a variety of factors including
sample bias and non-stationarity. In such settings, well calibrated uncertainty
estimates convey information about when a model’s output should (or should not)
be trusted. Many probabilistic deep learning methods, including Bayesian-and non-
Bayesian methods, have been proposed in the literature for quantifying predictive
uncertainty, but to our knowledge there has not previously been a rigorous large-
scale empirical comparison of these methods under dataset shift. We present a large-
scale benchmark of existing state-of-the-art methods on classification problems
and investigate the effect of dataset shift on accuracy and calibration. We find that
traditional post-hoc calibration does indeed fall short, as do several other previous
methods. However, some methods that marginalize over models give surprisingly
strong results across a broad spectrum of tasks.

1 Introduction

Recent successes across a variety of domains have led to the widespread deployment of deep
neural networks (DNNs) in practice. Consequently, the predictive distributions of these models are
increasingly being used to make decisions in important applications ranging from machine-learning
aided medical diagnoses from imaging (Esteva et al., 2017) to self-driving cars (Bojarski et al., 2016).
Such high-stakes applications require not only point predictions but also accurate quantification
of predictive uncertainty, i.e. meaningful confidence values in addition to class predictions. With
sufficient independent labeled samples from a target data distribution, one can estimate how well
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a model’s confidence aligns with its accuracy and adjust the predictions accordingly. However, in
practice, once a model is deployed the distribution over observed data may shift and eventually be
very different from the original training data distribution. Consider, e.g., online services for which the
data distribution may change with the time of day, seasonality or popular trends. Indeed, robustness
under conditions of distributional shift and out-of-distribution (OOD) inputs is necessary for the
safe deployment of machine learning (Amodei et al., 2016). For such settings, calibrated predictive
uncertainty is important because it enables accurate assessment of risk, allows practitioners to know
how accuracy may degrade, and allows a system to abstain from decisions due to low confidence.

A wide variety of approaches have been developed for quantifying predictive uncertainty in DNNs.
Probabilistic neural networks such as mixture density networks (MacKay & Gibbs, 1999) capture the
inherent ambiguity in outputs for a given input, also referred to as aleatoric uncertainty (Kendall &
Gal, 2017). Bayesian neural networks learn a posterior distribution over parameters that quantifies
parameter uncertainty, a type of epistemic uncertainty that can be reduced through the collection of
additional data. Popular approximate Bayesian approaches include Laplace approximation (MacKay,
1992), variational inference (Graves, 2011; Blundell et al., 2015), dropout-based variational inference
(Gal & Ghahramani, 2016; Kingma et al., 2015), expectation propagation and stochastic gradient
MCMC (Welling & Teh, 2011). Non-Bayesian methods include training multiple probabilistic
neural networks and ensembling the predictions of individual models (Osband et al., 2016; Lak-
shminarayanan et al., 2017). Another popular non-Bayesian approach involves re-calibration of
probabilities on a held-out validation set through temperature scaling (Platt, 1999), which was shown
by Guo et al. (2017) to lead to well-calibrated predictions on the i.i.d. test set.

Using Distributional Shift to Evaluate Predictive Uncertainty While previous work has evaluated
the quality of predictive uncertainty on OOD inputs (Lakshminarayanan et al., 2017), there has not
to our knowledge been a comprehensive evaluation of uncertainty estimates from different methods
under dataset shift. Indeed, we suggest that effective evaluation of predictive uncertainty is most
meaningful under conditions of distributional shift. One reason for this is that post-hoc calibration
gives good results in independent and identically distributed (i.i.d.) regimes, but can fail under even a
mild shift in the input data. And in real world applications, as described above, distributional shift is
widely prevalent. Understanding questions of risk, uncertainty, and trust in a model’s output becomes
increasingly critical as shift from the original training data grows larger.

Contributions In the spirit of calls for more rigorous understanding of existing methods (Lipton &
Steinhardt, 2018; Sculley et al., 2018; Rahimi & Recht, 2017), this paper provides a benchmark for
evaluating uncertainty that focuses not only on calibration in the i.i.d. setting but also calibration
under distributional shift. We present a large-scale evaluation of popular approaches in probabilistic
deep learning, focusing on methods that operate well in large-scale settings, and evaluate them on a
diverse range of classification benchmarks across image, text, and categorical modalities. We use
these experiments to evaluate the following questions:

• How trustworthy are the uncertainty estimates of different methods under dataset shift?

• Does calibration in the i.i.d. setting translate to calibration under dataset shift?

• How do uncertainty and accuracy of different methods co-vary under dataset shift? Are there
methods that consistently do well in this regime?

In addition to answering the questions above, we will also release open-source code and our model
predictions such that researchers can easily evaluate their approaches on these benchmarks.

2 Background

Notation and Problem Setup Let x ∈ Rd represent a set of d-dimensional features and y ∈
{1, . . . , k} denote corresponding labels (targets) for k-class classification. We assume that a training
dataset D consists of N i.i.d.samples D = {(xn, yn)}Nn=1.

Let p∗(x, y) denote the true distribution (unknown, observed only through the samples D), also
referred to as the data generating process. We focus on classification problems, in which the true
distribution is assumed to be a discrete distribution over k classes, and the observed y ∈ {1, . . . , k}
is a sample from the conditional distribution p∗(y|x). We use a neural network to model pθ(y|x) and
estimate the parameters θ using the training dataset. At test time, we evaluate the model predictions
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against a test set, sampled from the same distribution as the training dataset. However, here we would
also like to evaluate the model against OOD inputs sampled from q(x, y) 6= p∗(x, y). In particular,
we consider two kinds of shifts:

• shifted versions of the test inputs where the ground truth label belongs to one of the k classes. We
use shifts such as corruptions and perturbations proposed by Hendrycks & Dietterich (2019), and
ideally would like the model predictions to become more uncertain with increased shift, assuming
shift degrades accuracy.

• a completely different OOD dataset, where the ground truth label is not one of the k classes. Here
we check if the model exhibits higher predictive uncertainty for those new instances and to this
end report diagnostics that rely only on predictions and not ground truth labels.

High-level overview of existing methods A large variety of methods have been developed to either
provide higher quality uncertainty estimates or perform OOD detection to inform model confidence.
These can roughly be divided into:

1. Methods which deal with p(y|x) only, we discuss these in more detail in Section 3.
2. Methods which model the joint distribution p(y,x), e.g. deep hybrid models (Kingma et al., 2014;

Alemi et al., 2018; Nalisnick et al., 2019; Behrmann et al., 2018).
3. Methods with an OOD-detection component in addition to p(y|x) (Bishop, 1994; Lee et al., 2018;

Liang et al., 2018), and related work on selective classification (Geifman & El-Yaniv, 2017).

We refer to Shafaei et al. (2018) for a recent summary of these methods. Due to the differences in
modeling assumptions, a fair comparison between these different classes of methods is challenging;
for instance, some OOD detection methods rely on knowledge of a known OOD set, or train using a
none-of-the-above class, and it may not always be meaningful to compare predictions from these
methods with those obtained from a Bayesian DNN. We focus on methods described by (1) above, as
this allows us to focus on methods which make the same modeling assumptions about data and differ
only in how they quantify predictive uncertainty.

3 Methods and Metrics

We select a subset of methods from the probabilistic deep learning literature for their prevalence,
scalability and practical applicability4. These include (see also references within):

• (Vanilla) Maximum softmax probability (Hendrycks & Gimpel, 2017)
• (Temp Scaling) Post-hoc calibration by temperature scaling using a validation set (Guo et al., 2017)
• (Dropout) Monte-Carlo Dropout (Gal & Ghahramani, 2016; Srivastava et al., 2015) with rate p
• (Ensembles) Ensembles of M networks trained independently on the entire dataset using random

initialization (Lakshminarayanan et al., 2017) (we set M = 10 in experiments below)
• (SVI) Stochastic Variational Bayesian Inference for deep learning (Blundell et al., 2015; Graves,

2011; Louizos & Welling, 2017, 2016; Wen et al., 2018). We refer to Appendix A.6 for details of
our SVI implementation.

• (LL) Approx. Bayesian inference for the parameters of the last layer only (Riquelme et al., 2018)
– (LL SVI) Mean field stochastic variational inference on the last layer only
– (LL Dropout) Dropout only on the activations before the last layer

In addition to metrics (we use arrows to indicate which direction is better) that do not depend on
predictive uncertainty, such as classification accuracy ↑, the following metrics are commonly used:

Negative Log-Likelihood (NLL) ↓ Commonly used to evaluate the quality of model uncertainty on
some held out set. Drawbacks: Although a proper scoring rule (Gneiting & Raftery, 2007), it can
over-emphasize tail probabilities (Quinonero-Candela et al., 2006).

4The methods used scale well for training and prediction (see in Appendix A.8.). We also explored methods
such as scalable extensions of Gaussian Processes (Hensman et al., 2015), but they were challenging to train on
the 37M example Criteo dataset or the 1000 classes of ImageNet.
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Brier Score ↓ (Brier, 1950) Proper scoring rule for measuring the accuracy of predicted probabilities.
It is computed as the squared error of a predicted probability vector, p(y|xn,θ), and the one-hot
encoded true response, yn. That is,

BS = |Y|−1
∑
y∈Y

(p(y|xn,θ)− δ(y − yn))2 = |Y|−1
(

1− 2p(yn|xn,θ) +
∑
y∈Y

p(y|xn,θ)2
)
. (1)

The Brier score has a convenient interpretation as BS = uncertainty − resolution + reliability,
where uncertainty is the marginal uncertainty over labels, resolution measures the deviation of
individual predictions against the marginal, and reliability measures calibration as the average
violation of long-term true label frequencies. We refer to (DeGroot & Fienberg, 1983) for the
decomposition of Brier score into calibration and refinement for classification and to (Bröcker, 2009)
for the general decomposition for any proper scoring rule. Drawbacks: Brier score is insensitive to
predicted probabilities associated with in/frequent events.

Both the Brier score and the negative log-likelihood are proper scoring rules and therefore the
optimum score corresponds to a perfect prediction. In addition to these two metrics, we also evaluate
two metrics—expected calibration error and entropy—which focus on a particular aspect of the
predicted probabilities. Neither of these metrics is a proper scoring rule, and thus there exist trivial
solutions which make these metrics perfect; for example, returning the marginal probability p(y) for
every instance will yield perfectly calibrated but uninformative predictions. However, both metrics
measure important properties that are not directly measured by proper scoring rules.

Expected Calibration Error (ECE) ↓ Measures predicted probability accuracy (Naeini et al.,
2015). It is computed as the average gap between within bucket accuracy and within bucket
predicted probability for S buckets Bs = {n ∈ 1 . . . N : p(yn|xn,θ) ∈ (ρs, ρs+1]}. That
is, ECE =

∑S
s=1

|Bs|
N | acc(Bs) − conf(Bs)|, where acc(Bs) = |Bs|−1

∑
n∈Bs

[yn = ŷn],
conf(Bs) = |Bs|−1

∑
n∈Bs

p(ŷn|xn,θ), and ŷn = arg maxy p(y|xn,θ) is the n-th prediction.
When bins {ρs : s ∈ 1 . . . S} are quantiles of the held-out predicted probabilities, |Bs| ≈ |Bk| and
the estimation error is approximately constant. Drawbacks: Due to binning, ECE does not always
monotonically increase as predictions approach ground truth. If |Bs| 6= |Bk|, the estimation error
varies across bins.

There is no ground truth label for fully OOD inputs. Thus we report histograms of confidence
and predictive entropy on known and OOD inputs and accuracy versus confidence plots (Laksh-
minarayanan et al., 2017): Given the prediction p(y = k|xn,θ), we define the predicted label as
ŷn = arg maxy p(y|xn,θ), and the confidence as p(y = ŷ|x,θ) = maxk p(y = k|xn,θ). We filter
out test examples corresponding to a particular confidence threshold τ ∈ [0, 1] and compute the
accuracy on this set.

4 Experiments and Results

We evaluate the behavior of the predictive uncertainty of deep learning models on a variety of datasets
across three different modalities: images, text and categorical (online ad) data. For each we follow
standard training, validation and testing protocols, but we additionally evaluate results on increasingly
shifted data and an OOD dataset. We detail the models and implementations used in Appendix A.
Hyperparameters were tuned for all methods (except on ImageNet) as detailed in Appendix A.7.

4.1 An illustrative example - MNIST

We first illustrate the problem setup and experiments using the MNIST dataset. We used the
LeNet (LeCun et al., 1998) architecture, and, as with all our experiments, we follow standard training,
validation, testing and hyperparameter tuning protocols. However, we also compute predictions on
increasingly shifted data (in this case increasingly rotated or horizontally translated images) and study
the behavior of the predictive distributions of the models. In addition, we predict on a completely
OOD dataset, Not-MNIST (Bulatov, 2011), and observe the entropy of the model’s predictions. We
summarize some of our findings in Figure 1 and discuss below.

What we would like to see: Naturally, we expect the accuracy of a model to degrade as it predicts
on increasingly shifted data, and ideally this reduction in accuracy would coincide with increased
forecaster entropy. A model that was well-calibrated on the training and validation distributions would
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Figure 1: Results on MNIST: 1(a) and 1(b) show accuracy and Brier score as the data is increasingly
shifted. Shaded regions represent standard error over 10 runs. SVI has lower accuracy on the
validation and test splits, but it is significantly more robust to dataset shift as evidenced by a lower
Brier score and higher predictive entropy under shift (1(c)) and OOD data (1(e),1(f)).

ideally remain so on shifted data. If calibration (ECE or Brier reliability) remained as consistent
as possible, practitioners and downstream tasks could take into account that a model is becoming
increasingly uncertain. On the completely OOD data, one would expect the predictive distributions to
be of high entropy. Essentially, we would like the predictions to indicate that a model “knows what it
does not know” due to the inputs straying away from the training data distribution.

What we observe: We see in Figures 1(a) and 1(b) that accuracy certainly degrades as a function of
shift for all methods tested, and they are difficult to disambiguate on that metric. However, the Brier
score paints a clearer picture and we see a significant difference between methods, i.e. prediction
quality degrades more significantly for some methods than others. An important observation is that
while calibrating on the validation set leads to well-calibrated predictions on the test set, it does
not guarantee calibration on shifted data. In fact, nearly all other methods (except vanilla) perform
better than the state-of-the-art post-hoc calibration (Temperature scaling) in terms of Brier score
under shift. While SVI achieves the worst accuracy on the test set, it actually outperforms all other
methods by a much larger margin when exposed to significant shift. We see in Figure 1(c) that SVI
gives the highest accuracy at high confidence (or conversely is much less frequently confidently
wrong) which can be important for high-stakes applications. Most methods demonstrate very low
entropy (Figure 1(e)) and give high confidence predictions (Figure 1(f)) on data that is entirely OOD,
i.e. they are confidently wrong about completely OOD data.

4.2 Image Models: CIFAR-10 and ImageNet

We now study the predictive distributions of residual networks (He et al., 2016) trained on two
benchmark image datasets, CIFAR-10 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009), under
distributional shift. We use 20-layer and 50-layer ResNets for CIFAR-10 and ImageNet respectively.
For shifted data we use 80 different distortions (16 different types with 5 levels of intensity each, see
Appendix B for illustrations) introduced by Hendrycks & Dietterich (2019). To evaluate predictions
of CIFAR-10 models on entirely OOD data, we use the SVHN dataset (Netzer et al., 2011).

We summarize the results in Figures 2 and 3. Figure 2 inspects the predictive distributions of the
models on CIFAR-10 (top) and ImageNet (bottom) for skewed (Gaussian blur) and OOD data.
Figure 3 summarizes the accuracy and ECE for CIFAR-10 (top) and ImageNet (bottom) across all 80
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Figure 2: Results on CIFAR-10 and ImageNet. Left column: 2(a) and 2(d) show accuracy as a
function of confidence. Middle column: 2(b) and 2(e) show the number of examples greater than
given confidence values for Gaussian blur of intensity 3. Right column: 2(c) and 2(f) show histogram
of entropy and confidences from CIFAR-trained models on a completely different dataset (SVHN).

combinations of corruptions and intensities from (Hendrycks & Dietterich, 2019). Classifiers on both
datasets show poorer accuracy and calibration with increasing degrees of skew. Comparing accuracy
for different methods, we see that ensembles achieve highest accuracy under distributional skew.
Comparing the ECE for different methods, we observe that while the methods achieve comparable
low values of ECE for small values of skew, ensembles outperform the other methods for larger values
of skew. Interestingly, while temperature scaling achieves low ECE for low values of skew, the ECE
increases significantly as the skew increases, which indicates that calibration on the i.i.d. validation
dataset does not guarantee calibration under distributional skew. (Note that for ImageNet, we found
similar trends considering just the top-5 predicted classes, See Figure S6.) Furthermore, the results
show that while temperature scaling helps significantly over the vanilla method, ensembles and
dropout tend to be better. We refer to Appendix C for additional results; Figures S5 and S6 report
additional metrics on CIFAR-10 and ImageNet, such as Brier score (and its component terms), as
well as top-5 error for increasing values of skew.

Overall, ensembles consistently perform best across metrics and dropout consistently performed
better than temperature scaling and last layer methods. While the relative ordering of methods is
consistent on both CIFAR-10 and ImageNet (ensembles perform best), the ordering is quite different
from that on MNIST where SVI performs best. Interestingly, LL-SVI and LL-Dropout perform worse
than the vanilla method on skewed datasets as well as SVHN.

4.3 Text Models

Following Hendrycks & Gimpel (2017), we train an LSTM (Hochreiter & Schmidhuber, 1997) on
the 20newsgroups dataset (Lang, 1995) and assess the model’s robustness under distributional skew
and OOD text. We use the even-numbered classes (10 classes out of 20) as in-distribution and the 10
odd-numbered classes as skewed data. We provide additional details in Appendix A.4.

We look at confidence vs accuracy when the test data consists of a mix of in-distribution and either
skewed or completely OOD data, in this case the One Billion Word Benchmark (LM1B) (Chelba
et al., 2013). Figure 4 (bottom row) shows the results. Ensembles significantly outperform all other
methods, and achieve better trade-off between accuracy versus confidence. Surprisingly, LL-Dropout
and LL-SVI perform worse than the vanilla method, especially when tested on fully OOD data.
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Figure 3: Calibration under distributional shift: boxplots showing a detailed comparison of Brier
score and ECE under all types of corruptions on (a) CIFAR-10 and (b) ImageNet. Each box shows
the quartiles summarizing the results across all types of skew while the error bars indicate the min
and max across different skew types. Figures showing additional metrics are provided in Figures S5
(CIFAR-10) and S6 (ImageNet). Tables for numerical comparisons are provided in Appendix E.

Figure 4 reports histograms of predictive entropy on in-distribution data and compares them to those
for the skewed and OOD datasets. As expected, most methods achieve the highest predictive entropy
on the completely OOD dataset, followed by the skewed dataset and then the in-distribution test
dataset. Only ensembles have consistently higher entropy on the skewed data, which explains why
they perform best on the confidence vs accuracy curves in the second row of Figure 4. Compared
with the vanilla model, Dropout and LL-SVI have more a distinct separation between in-distribution
and skewed or OOD data. While Dropout and LL-Dropout perform similarly on in-distribution,
LL-Dropout exhibits less uncertainty than Dropout on skewed and OOD data. Temperature scaling
does not appear to increase uncertainty significantly on the skewed data.
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(d) Confidence vs Count

Figure 4: Top row: Histograms of the entropy of the predictive distributions for in-distribution (solid
lines), skewed (dotted lines), and completely different OOD (dashed lines) text examples. Bottom
row: Confidence score vs accuracy and count respectively when evaluated for in-distribution and
in-distribution shift text examples (a,b), and in-distribution and OOD text examples (c,d).

4.4 Ad-Click Model with Categorical Features

Finally, we evaluate the performance of different methods on the Criteo Display Advertising Chal-
lenge5 dataset, a binary classification task consisting of 37M examples with 13 numerical and 26
categorical features per example. We introduce skew by reassigning each categorical feature to a
random new token with some fixed probability that controls the intensity of skew. This coarsely
simulates a type of skew observed in non-stationary categorical features as category tokens appear
and disappear over time. The model consists of a 3-hidden-layer multi-layer-perceptron (MLP) with
hashed and embedded categorical features and achieves a negative log-likelihood of approximately
0.5 (contest winners achieved 0.44). Due to class imbalance (∼ 25% of examples are positive), we
report AUC instead of classification accuracy.

Results from these experiments are depicted in Figure 5. (Figure S7 in Appendix C shows additional
results including ECE and Brier score decomposition.) We observe that ensembles are superior
in terms of both AUC and Brier score for most of the values of skew, with the performance gap
between ensembles and other methods generally increasing as the skew increases. Both Dropout
model variants yielded improved AUC on skewed data, and Dropout surpassed ensembles in Brier
score at skew-randomization values above 60%. SVI proved challenging to train, and the resulting
model uniformly performed poorly; LL-SVI fared better but generally did not improve upon the
vanilla model. Strikingly, temperature scaling has a worse Brier score than Vanilla indicating that
post-hoc calibration on the validation set actually harms calibration under dataset shift.

T
ra
in

V
a
lid

T
e
st

5
%

1
5
%

2
5
%

3
5
%

4
5
%

5
5
%

6
5
%

7
5
%

8
5
%

9
5
%

0.55

0.60

0.65

0.70

0.75

0.80

A
U
C

T
ra

in
V

a
lid

T
e
st

5
%

1
5

%

2
5

%

3
5

%

4
5

%

5
5

%

6
5

%

7
5

%

8
5

%

9
5

%

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

B
ri

e
r 

S
co

re

Vanilla

Dropout

LL-Dropout

LL-SVI

Temp Scaling

Ensemble

0.4 0.5 0.6 0.7 0.8 0.9 1.0

¿

0

10000

20000

30000

40000

50000

N
u
m

b
e
r 

o
f 

e
x
a
m

p
le

s 
p
(y
jx
)
¸
¿

Vanilla

Dropout

LL-Dropout

LL-SVI

Temp Scaling

Ensemble

0.4 0.5 0.6 0.7 0.8 0.9 1.0

¿

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy
 o

n
 e

x
a
m

p
le

s 
p
(y
jx
)
¸
¿

Vanilla

Dropout

LL-Dropout

LL-SVI

Temp Scaling

Ensemble

Figure 5: Results on Criteo: The first two plots show degrading AUCs and Brier scores with increasing
skew while the latter two depict the distribution of prediction confidences and their corresponding
accuracies at 75% randomization of categorical features. SVI is excluded as it performed too poorly.

5https://www.kaggle.com/c/criteo-display-ad-challenge
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5 Takeaways and Recommendations

We presented a large-scale evaluation of different methods for quantifying predictive uncertainty
under dataset shift, across different data modalities and architectures. Our take-home messages are
the following:

• Quality of uncertainty consistently degrades with increasing dataset shift regardless of method.

• Better calibration and accuracy on i.i.d. test dataset does not usually translate to better calibration
under dataset shift (skewed versions as well as completely different OOD data).

• Post-hoc calibration (on i.i.d validation) with temperature scaling leads to well-calibrated uncer-
tainty on i.i.d. test and small values of skew, but is significantly outperformed by methods that
take epistemic uncertainty into account as the skew increases.

• Last layer Dropout exhibits less uncertainty on skewed and OOD datasets than Dropout.

• SVI is very promising on MNIST/CIFAR but it is difficult to get to work on larger datasets such
as ImageNet and other architectures such as LSTMs.

• The relative ordering of methods is mostly consistent (except for MNIST) across our experiments.
The relative ordering of methods on MNIST is not reflective of their ordering on other datasets.

• Deep ensembles seem to perform the best across most metrics and be more robust to dataset shift.
We found that relatively small ensemble size (e.g. M = 5) may be sufficient (Appendix D).

We hope that this benchmark is useful to the community and inspires more research on uncertainty
under dataset shift, which seems challenging for existing methods. While we focused only on the
quality of predictive uncertainty, applications may also need to consider computational and memory
costs of the methods; Table S1 in Appendix A.8 discusses these costs, and the best performing
methods tend to be more expensive. Reducing the computational and memory costs, while retaining
the same performance under dataset shift, would also be a key research challenge.
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Can You Trust Your Model’s Uncertainty? Evaluating Predictive
Uncertainty Under Dataset Shift: Appendix

A Model Details

A.1 MNIST

We evaluated both LeNet and a fully-connected neural network (MLP) under shift on MNIST. We
observed similar trends across metrics for both models, so we report results only for LeNet in
Section 4.1. LeNet and MLP were trained for 20 epochs using the Adam optimizer (Kingma &
Ba, 2014) and used ReLU activation functions. For stochastic methods, we averaged 300 sample
predictions to yield a predictive distribution, and the ensemble model used 10 instances trained from
independent random initializations. The MLP architecture consists of two hidden layers of 200
units each with dropout applied before every dense layer. The LeNet architecture (LeCun et al.,
1998) applies two convolutional layers 3x3 kernels of 32 and 64 filters respectively) followed by two
fully-connected layers with one hidden layer of 128 activations; dropout was applied before each
fully-connected layer. We employed hyperparameter tuning (See Section A.7) to select the training
batch size, learning rate, and dropout rate.

A.2 CIFAR-10

Our CIFAR model used the ResNet-20 V1 architecture with ReLU activations. Model parameters
were trained for 200 epochs using the Adam optimizer and employed a learning rate schedule that
multiplied an initial learning rate by 0.1, 0.01, 0.001, and 0.0005 at steps 80, 120, 160, and 180
respectively. Training inputs were randomly distorted using horizontal flips and random crops
preceded by 4-pixel padding as described in (He et al., 2016). For relevant methods, dropout was
applied before each convolutional and dense layer (excluding the raw inputs), and stochastic methods
sampled 128 predictions per sample. Hyperparameter tuning was used to select the initial learning
rate, training batch size, and the dropout rate.

A.3 ImageNet 2012

Our ImageNet model used the ResNet-50 V1 architecture with ReLU activations and was trained for
90 epochs using SGD with Nesterov momentum. The learning rate schedule linearly ramps up to a
base rate in 5 epochs and scales down by a factor of 10 at each of epochs 30, 60, and 80. As with
the CIFAR-10 model, stochastic methods used a sample-size of 128. Training images were distorted
with random horizontal flips and random crops.

A.4 20 Newsgroups

We use a pre-processing strategy similar to the one proposed by Hendrycks & Gimpel (2017) for 20
Newsgroups. We build a vocabulary of size 30,000 words and words are indexed based on the word
frequencies. The rare words are encoded as unknown words. We fix the length of each text input
by setting a limit of 250 words, and those longer than 250 words are truncated, and those shorter
than 250 words are padded with zeros. Text in even-numbered classes are used as in-distribution
inputs, and text from the odd-numbered of classes are used skewed OOD inputs. A dataset with the
same number of randomly selected text inputs from the LM1B dataset (Chelba et al., 2013) is used as
completely different OOD dataset. The classifier is trained and evaluated only using the text from
the even-numbered in-distribution classes in the training dataset. The final test results are evaluated
based on in-distribution test dataset, skew OOD test dataset, and LM1B dataset.

The vanilla model uses a one-layer LSTM model of size 32 and a dense layer to predict the 10 class
probabilities based on word embedding of size 128. A dropout rate of 0.1 is applied to both the LSTM
layer and the dense layer for the Dropout model. The LL-SVI model replaces the last dense layer
with a Bayesian layer, the ensemble model aggregates 10 vanilla models, and stochastic methods
sample 5 predictions per example. The vanilla model accuracy for in-distribution test data is 0.955.
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A.5 Criteo

Each categorical feature xk from the Criteo dataset was encoded by hashing the string token into a
fixed number of buckets Nk and either encoding the hash-bin as a one-hot vector if Nk < 110 or
embedding each bucket as a dk dimensional vector otherwise. This dense feature vector, concatenated
with 13 numerical features, feeds into a batch-norm layer followed by a 3-hidden-layer MLP. Each
model was trained for one epoch using the Adam optimizer with a non-decaying learning rate.

Values of Nk and dk were tuned to maximize log-likelihood for a vanilla model, and the resulting
architectural parameters were applied to all methods. This tuning yielded hidden-layers of size 2572,
1454, and 1596, and hash-bucket counts and embedding dimensions of sizes listed below:

Nk = [1373, 2148, 4847, 9781, 396, 28, 3591, 2798, 14, 7403, 2511, 5598, 9501,

46, 4753, 4056, 23, 3828, 5856, 12, 4226, 23, 61, 3098, 494, 5087]

dk = [3, 9, 29, 11, 17, 0, 14, 4, 0, 12, 19, 24, 29, 0, 13, 25, 0, 8, 29, 0, 22, 0, 0, 31, 0, 29]

Learning rate, batch size, and dropout rate were further tuned for each method. Stochastic methods
used 128 prediction samples per example.

A.6 Stochastic Variational Inference Details

For MNIST we used Flipout (Wen et al., 2018), where we replaced each dense layer and convolutional
layer with mean-field variational dense and convolutional Flipout layers respectively. Variational
inference for deep ResNets (He et al., 2016) is non-trivial, so for CIFAR we replaced a single
linear layer per residual branch with a Flipout layer, removed batch normalization, added Selu
non-linearities (Klambauer et al., 2017), empirical Bayes for the prior standard deviations as in Wu
et al. (2019) and careful tuning of the initialization via Bayesian optimization.

A.7 Hyperparameter Tuning

Hyperparameters were optimized using Bayesian optimization via an automated tuning system to
maximize the log-likelihood on a validation set that was held out from training (10K examples for
MNIST and CIFAR-10, 125K examples for ImageNet). We optimized log-likelihood rather than
accuracy since the former is a proper scoring rule.

A.8 Computational and Memory Complexity of Different methods

In addition to performance, applications may also need to consider computational and memory costs;
Table S1 discusses them for each method.

Table S1: Computational and memory costs for evaluated methods. Notation: m represents flops or
storage for the full model, d represents flops or storage for the last layer, k denotes replications, n
denotes number of evaluated points, and v denotes the validation set size. Serving/training compute
is identical except that v = 0 for serving. Implicit in this table is a memory/compute tradeoff for
sampling. Sampled weights/masks need not be stored explicitly via PRNG seed reuse; we assume the
computational cost of sampling is zero.

Method Compute/n Storage
Vanilla m m

Temp Scaling m+ vm/n m
LL-Dropout m+ d(k − 1) m

LL-SVI m+ d(k − 1) m+ d
SVI mk 2m

Dropout mk m
Ensemble mk mk

B Skewed Images

We distorted MNIST images using rotations with spline filter interpolation and cyclic translations as
depicted in Figure S1.
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For the corrupted ImageNet dataset, we used ImageNet-C (Hendrycks & Dietterich, 2019). Figure S2
shows examples of ImageNet-C images at varying corruption intensities. Figure S3 shows ImageNet-
C images with the 16 corruptions analyzed in this paper, at intensity 3 (on a scale of 1 to 5).

(a) Rotations

(b) Cyclic translations

Figure S1: Examples of rotated and cyclically translated MNIST digits. Results for accuracy and
calibration on rotated/translated MNIST are shown in Figure 1.

0 1 2 3 4 5

Figure S2: Examples of ImageNet images corrupted by Gaussian blur, at intensities of 0 (uncorrupted
image) through 5 (maximum corruption included in ImageNet-C).

Figure S3: Examples of 16 corruption types in ImageNet-C images, at corruption intensity 3 (on a
scale from 1–5). The same corruptions were applied to CIFAR-10. Figure 3 and Section C show
boxplots for each uncertainty method and corruption intensity, spanning all corruption types.
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C Calibration under distributional skew: Additional Results

Figures S4, S5, S6 and S7 show comprehensive results on MNIST, CIFAR-10, ImageNet and Criteo
respectively across various metrics including Brier score, along with the components of the Brier
score : reliability (lower means better calibration) and resolution (higher values indicate better
predictive quality). Ensembles and dropout outperform all other methods across corruptions, while
LL SVI shows no improvement over the baseline model.
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Figure S4: Boxplots facilitating comparison of methods for each skew level showing detailed
comparisons of various metrics under all types of corruptions on MNIST. Each box shows the
quartiles summarizing the results across all types of skew while the error bars indicate the min and
max across different skew types.
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Figure S5: Boxplots facilitating comparison of methods for each skew level showing detailed
comparisons of various metrics under all types of corruptions on CIFAR-10. Each box shows the
quartiles summarizing the results across all types of skew while the error bars indicate the min and
max across different skew types.
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Figure S6: Boxplots facilitating comparison of methods for each skew level showing detailed
comparisons of various metrics under all types of corruptions on ImageNet. Each box shows the
quartiles summarizing the results across all types of skew while the error bars indicate the min and
max across different skew types.
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Figure S7: Comprehensive comparison of metrics on Criteo models. The Brier decomposition reveals
that the majority of its degradation is due to worsening reliability, and this component alone appears
to largely explain the ranking of methods in total Brier score. Ensemble notably degrades most
rapidly in resolution but persists with better reliability compared other methods for most of the
data-corruption range; on ECE it remains roughly in the middle among explored methods. Dropout
(and to a lesser extend LL-Dropout) perform best on ECE and experience slower degradation in both
resolution and reliability leading it to surpass ensembles at the severe range of data corruption. Total
Brier score and AUC results are discussed in detail in Section 4.4.

D Effect of the number of samples on the quality of uncertainty

Figure S8 shows the effect of the number of sample sizes used by Dropout, SVI (and last-layer
variants) on the quality of predictive uncertainty, as measured by the Brier score. Increasing the
number of samples has little effect on last-layer variants, whereas increasing the number of samples
improves the performance for SVI and Dropout, with diminishing returns beyond size 5.
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Figure S8: Effect of Dropout and SVI sample sizes on CIFAR-10 Brier scores under increasing
Gaussian blur. See Section 4.2 for full results on CIFAR-10.

Figure S9 shows the effect of ensemble size on CIFAR-10 (top) and ImageNet (bottom). Similar to
SVI and Dropout, we see that increasing the number of models in the ensemble improves perfor-
mance with diminishing returns beyond size 5. As mentioned earlier, the Brier score can be further
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decomposed into BS = calibration + refinement = reliability + uncertainty− resolution where
reliability ↓ measures calibration as the average violation of long-term true label frequencies, and
refinement = uncertainty− resolution, where uncertainty is the marginal uncertainty over labels
(independent of predictions) and resolution ↑ measures the deviation of individual predictions from
the marginal.
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(e) Brier Reliability
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Figure S9: Effect of the ensemble size on CIFAR-10 (top row) and ImageNet (bottom row) Brier
scores under increasing Gaussian-blur skew. We additionally show the Brier score components:
Reliability (lower means better calibration) and Resolution (higher values indicate better predictive
quality). Note that the scales for Reliability are significantly smaller than the other plots.

E Tables of Metrics

The tables below report quartiles of Brier score, negative log-likelihood, and ECE for each model and
dataset where quartiles are computed over all corrupted variants of the dataset.

E.1 CIFAR-10

Dataset Vanilla Temp. Scaling Ensembles Dropout LL-Dropout SVI LL-SVI

Brier Score (25th) 0.243 0.227 0.165 0.215 0.259 0.250 0.246
Brier Score (50th) 0.425 0.392 0.299 0.349 0.416 0.363 0.431
Brier Score (75th) 0.747 0.670 0.572 0.633 0.728 0.604 0.732

NLL (25th) 2.356 1.685 1.543 1.684 2.275 1.628 2.352
NLL (50th) 1.120 0.871 0.653 0.771 1.086 0.823 1.158
NLL (75th) 0.578 0.473 0.342 0.446 0.626 0.533 0.591

ECE (25th) 0.057 0.022 0.031 0.021 0.069 0.029 0.058
ECE (50th) 0.127 0.049 0.037 0.034 0.136 0.064 0.135
ECE (75th) 0.288 0.180 0.110 0.174 0.292 0.187 0.275

19



E.2 ImageNet

Dataset Vanilla Temp. Scaling Ensembles Dropout LL-Dropout LL-SVI

Brier Score (25th) 0.553 0.551 0.503 0.577 0.550 0.590
Brier Score (50th) 0.733 0.726 0.667 0.754 0.723 0.766
Brier Score (75th) 0.914 0.899 0.835 0.922 0.896 0.938

NLL (25th) 1.859 1.848 1.621 1.957 1.830 2.218
NLL (50th) 2.912 2.837 2.446 3.046 2.858 3.504
NLL (75th) 4.305 4.186 3.661 4.567 4.208 5.199

ECE (25th) 0.057 0.031 0.022 0.017 0.034 0.065
ECE (50th) 0.102 0.072 0.032 0.043 0.071 0.106
ECE (75th) 0.164 0.129 0.053 0.109 0.123 0.148

E.3 Criteo

Dataset Vanilla Temp. Scaling Ensembles Dropout LL-Dropout SVI LL-SVI

Brier Score (25th) 0.353 0.355 0.336 0.350 0.353 0.512 0.361
Brier Score (50th) 0.385 0.391 0.366 0.373 0.379 0.512 0.396
Brier Score (75th) 0.409 0.416 0.395 0.393 0.403 0.512 0.421

NLL (25th) 0.581 0.594 0.508 0.532 0.542 7.479 0.554
NLL (50th) 0.788 0.829 0.552 0.577 0.600 7.479 0.633
NLL (75th) 0.986 1.047 0.608 0.624 0.664 7.479 0.711

ECE (25th) 0.041 0.055 0.044 0.043 0.052 0.254 0.066
ECE (50th) 0.097 0.113 0.100 0.085 0.100 0.254 0.127
ECE (75th) 0.135 0.149 0.141 0.116 0.136 0.254 0.162
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