
Mach Learn (2018) 107:15–41
https://doi.org/10.1007/s10994-017-5683-z

Efficient benchmarking of algorithm configurators via
model-based surrogates

Katharina Eggensperger1 · Marius Lindauer1 · Holger H. Hoos2 ·
Frank Hutter1 · Kevin Leyton-Brown2

Received: 11 May 2016 / Accepted: 4 October 2017 / Published online: 22 December 2017
© The Author(s) 2017

Abstract The optimization of algorithm (hyper-)parameters is crucial for achieving peak
performance across awide range of domains, ranging fromdeep neural networks to solvers for
hard combinatorial problems. However, the proper evaluation of new algorithm configuration
(AC) procedures (or configurators) is hindered by two key hurdles. First, AC scenarios are
hard to set up, including the target algorithm to be optimized and the problem instances
to be solved. Second, and even more significantly, they are computationally expensive: a
single configurator run involves many costly runs of the target algorithm. Here, we propose
a benchmarking approach that uses surrogate scenarios, which are computationally cheap
while remaining close to the original AC scenarios. These surrogate scenarios approximate
the response surface corresponding to true target algorithm performance using a regression
model. In our experiments, we construct and evaluate surrogate scenarios for hyperparameter
optimization as well as for AC problems that involve performance optimization of solvers
for hard combinatorial problems. We generalize previous work by building surrogates for
AC scenarios with multiple problem instances, stochastic target algorithms and censored
running time observations. We show that our surrogate scenarios capture overall important

Editors: Pavel Brazdil and Christophe Giraud-Carrier.

B Katharina Eggensperger
eggenspk@cs.uni-freiburg.de

Marius Lindauer
lindauer@cs.uni-freiburg.de

Holger H. Hoos
hoos@cs.ubc.ca

Frank Hutter
fh@cs.uni-freiburg.de

Kevin Leyton-Brown
kevinlb@cs.ubc.ca

1 University of Freiburg, Freiburg im Breisgau, Germany

2 University of British Columbia, Vancouver, BC, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5683-z&domain=pdf
http://orcid.org/0000-0002-0309-401X

16 Mach Learn (2018) 107:15–41

characteristics of the original AC scenarios from which they were derived, while being much
easier to use and orders of magnitude cheaper to evaluate.

Keywords Algorithm configuration · Hyper-parameter optimization · Empirical perfor-
mance model

1 Introduction

The performance of many algorithms (notably, bothmachine learning procedures and solvers
for hard combinatorial problems) depends critically on (hyper-)parameter settings, which are
oftendifficult or costly to optimize.This observationhasmotivated agrowingbodyof research
into automatic methods for finding good settings of such parameters. Recently, sequential
model-basedBayesian optimizationmethods have been shown to outperformmore traditional
methods for hyperparameter optimization (such as grid search and random search) and to
rival or surpass the results achieved by human domain experts (Snoek et al. 2012; Thornton
et al. 2013; Bergstra et al. 2014; Lang et al. 2015).

Hyperparameter optimization (HPO) aims to find a hyperparameter setting θ from the
space of all possible settings� of a given learning algorithm that minimizes expected loss on
completely new data (where the expectation is taken over the data distribution). This is often
approximated as the blackbox problem of finding a setting that optimizes cross-validation
error L(θ):

θ∗ ∈ argmin
θ∈�

L(θ). (1)

In the more general algorithm configuration (AC) problem, the goal is to optimize a perfor-
mance metric m : � × Π → R of any type of algorithm (the so-called target algorithm)
across a set of problem instances π ∈ Π , i.e., to find1

θ∗ ∈ argmin
θ∈�

1

|Π |
∑

π∈Π

m(θ , π). (2)

The concept of problem instances arises naturallywhenoptimizing the performance of param-
eterized solvers for combinatorial problems, such as the propositional satisfiability problem
(SAT), but we also use this concept to model individual cross-validation folds in hyperpa-
rameter optimization (see, e.g., Thornton et al. 2013). HPO is thus a special case of AC.

General-purpose configurators, i.e., algorithm configuration procedures that solve AC
problems, such as ParamILS (Hutter et al. 2009), GGA (Ansótegui et al. 2009, 2015), irace
(López-Ibáñez et al. 2016) and SMAC (Hutter et al. 2011b) have been shown to substantially
improve the performance of state-of-the-art algorithms for a wide range of combinatorial
problems including SAT (Hutter et al. 2007, 2017), answer set programming (Gebser et al.
2011; Silverthorn et al. 2012), AI planning (Vallati et al. 2013) and mixed integer program-
ming (Hutter et al. 2009), and have also been used to find good instantiations of machine
learning frameworks (Thornton et al. 2013; Feurer et al. 2015a) and good architectures and
hyperparameters for deep neural networks (Domhan et al. 2015).

1 We assume, w.l.o.g., that the given performance metric m is to be minimized. Problems of maximizing m′
can simply be treated as minimization problems of the form m = −m′.

123

Mach Learn (2018) 107:15–41 17

1.1 Obstacles for research on algorithm configuration

One obstacle to further progress in AC is a paucity of reproducible experiments and empirical
studies. The hyperparameter optimization library HPOlib (Eggensperger et al. 2013) and
the algorithm configuration library AClib (Hutter et al. 2014a) represent first steps towards
alleviating this problem. Each scenario in these libraries consists of a parameterized algorithm
and a set of inputs on which the target algorithm should be optimized. These inputs are
problem instances for AC scenarios and datasets for HPO scenarios. All scenarios offer a
unified interface, making it easier to systematically compare different approaches. However,
even with such benchmark libraries available, it is still challenging to assess the performance
of configurators in a principled and reproducible manner, for several reasons:

1. Amundane, but often significant, obstacle is obtaining someone else’s implementation of
a target algorithm towork on one’s own system. This can involve resolving dependencies,
acquiring required software licenses, and obtaining the appropriate input data (whichmay
involve confidentiality agreements or IP restrictions).

2. Some target algorithms require specialized hardware; most notably, general-purpose
graphics processingunits (GPGPUs) havebecomea standard requirement for the effective
training of modern deep learning architectures (Krizhevsky et al. 2012).

3. Running even one configuration of a target algorithm can require minutes or hours, and
hence evaluating hundreds or even thousands of different algorithm configurations is
often quite expensive, requiring days of wall-clock time on a large computer cluster. The
computational expense of comprehensive experiments can therefore be prohibitive for
research groups lacking access to large-scale computing infrastructure.

1.2 Contributions

In this work, we show that we can use surrogate models to construct cheap-to-evaluate
surrogate AC scenarios that offer a practical alternative for AC benchmarking experiments
by replacing expensive evaluations of the true performance m(θ , π) of a target algorithm
configuration θ on a problem instance π with a much cheaper model prediction m̂(θ , π).
These surrogate AC scenarios are syntactically equivalent to the original AC scenarios they
replace, i.e., sharing the same hyperparameter spaces, instances, etc. (c.f. the formal definition
of AC in Eq. 1).

To construct such surrogate scenarios, we leverage empirical performance models (EPMs;
Leyton-Brown et al. 2009; Hutter et al. 2014b)—regression models that characterize a given
algorithm’s performance across problem instances and/or parameter settings. The construc-
tion of such surrogate models is an expensive offline step,2 but once such a model has been
obtained, it can be used repeatedly as the basis for efficient experiments with new configura-
tors. Figures 1 and 2 schematically illustrate the workflow for running a configurator on the
original scenario and the corresponding surrogate scenario, respectively.

Our surrogate scenarios can be useful in several different ways, including:

1. They can be used to speed up debugging and unit testing of configurators, since our
surrogate scenarios are syntactically the same as the original ones (e.g., to test conditional,
categorical, and continuous parameters; or to test reasoning across instances). Thus they
facilitate the development and effective use of such algorithms.

2 By far themost expensive part of this offline step is gathering target algorithm performance data by executing
the algorithm with various parameter settings on multiple problem instances. However, as we describe in more
detail in Sect. 3 this data can be gathered as a by-product of running configurators on the algorithm.

123

18 Mach Learn (2018) 107:15–41

Algorithm Configuration Scenario

Configuration
Space Θ

Algorithm
Configurator

Target
Algorithm A Instances Π

Call A(θ)

on π ∈ Π

Solves

Return Cost m(θ, π)

Fig. 1 Workflow of algorithm configuration with target algorithm runs

Surrogate Scenario

Configuration
Space Θ

Algorithm
Configurator

Performance Data
〈θ, π, m(θ, π)〉

Empirical Per-
formance Model
m̂ : Θ × Π → R

Call A(θ)

on π ∈ Π

Return Predicted Cost m̂(θ, π)

Fig. 2 Workflow of algorithm configuration with surrogate scenario

2. Since the large computational expense of running configurators is typically dominated
by the cost of evaluating target algorithm performance under various (hyper-)parameter
settings, our scenarios can also substantially reduce the time required for running a
configurator, facilitating whitebox testing.

3. Surrogate scenarios that closely resemble original scenarios can also facilitate the evalu-
ation of new features inside a configurator, or even be used for meta-optimization of the
parameters of such a procedure. Of course, suchmeta-optimization can also be performed
without using surrogates, albeit at great expense (see, e.g., Hutter et al. 2009).

This article extends an initial study published at AAAI (Eggensperger et al. 2015), which
focused only on the special case of HPO. Here, we generalize that work to the much more
complex general AC problem, handling the problems of optimization across many instances
with high-dimensional feature vectors, censored observations due to prematurely-terminated
runs, and randomized algorithms.

1.3 Existing work on surrogates

Given the large overhead involved in studying complex scenarios from real-world applica-
tions, researchers studying HPO have often fallen back on simple synthetic test functions,
such as the Branin function (Dixon and Szegö 1978), to compare HPO procedures (Snoek
et al. 2012).While such functions are cheap to evaluate, they are not representative of realistic
HPO problems because they are smooth and often have very different shapes. Furthermore,
they only involve real-valued parameters and hence do not incorporate the categorical and
conditional hyperparameters typical of many hyperparameter optimization scenarios.

In the special case of small, finite hyperparameter spaces, a much better alternative is
simply to record the performance of every hyperparameter configuration, thereby speeding
up future evaluations via table lookup. Such a table-based surrogate is trivial to use on a

123

Mach Learn (2018) 107:15–41 19

new system, without any complicating factors involved in running the original algorithm
(setup, special hardware requirements, licensing, computational cost, etc.). In fact, several
researchers have already applied this approach to simplify experiments (Birattari et al. 2002;
Snoek et al. 2012; Bardenet et al. 2014; Feurer et al. 2015b; Wistuba et al. 2015).

Unfortunately, table lookup is limited to small, finite hyperparameter spaces. Here, we
generalize the idea of such surrogates to potentially high-dimensional spaces thatmay include
real-valued, categorical, and conditional hyperparameters. As with table lookup, we first
evaluate many hyperparameter configurations in an expensive offline phase. However, we
then use the resulting performance data to train a regression model that approximates future
evaluations viamodel predictions. As before, we obtain a surrogate of algorithm performance
that is cheap to evaluate and trivially portable. Since these model-based surrogates offer only
approximate representations of performance, it is crucial to investigate the quality of their
predictions, as we do in this work.

We are not the first to propose the use of learned surrogate models that stand in for com-
putationally complex functions. In the field of meta-learning (Brazdil et al. 2008), regression
models have been used extensively to predict the performance of algorithms across various
datasets based on dataset features. Similarly, in the field of algorithm selection (Rice 1976;
for a survey see Kotthoff 2014) regression models have been used to predict the performance
of algorithms on problem instances (e.g., a satisfiability formula) to select themost promising
one (e.g., Nudelman et al. 2003; Xu et al. 2008; Gebser et al. 2011). The statistics literature
on the design and analysis of computer experiments (DACE; Sacks et al. 1989; Santner et al.
2003; Gorissen et al. 2010) uses similar surrogate models to guide a sequential experimental
design strategy, aiming to achieve either an overall strongmodel fit or to identify theminimum
of a function. Surrogate models are also at the core of the sequential model-based Bayesian
optimization framework (Brochu et al. 2010; Hutter et al. 2011b; Shahriari et al. 2016).While
all of these lines of work incrementally construct surrogate models of a function in order to
inform an active learning criterion that determines new inputs to evaluate, our work differs
in its goal: obtaining high-fidelity surrogate scenarios as an end in itself, rather than as a
means to identifying good points in the space. In that vein—as previously mentioned—our
approach is more similar to work on empirical performance models (Leyton-Brown et al.
2009; Hutter et al. 2014b).

1.4 Structure of the article

The remainder of this article is structured as follows. First, we provide background on the AC
problem in Sect. 2, paying particular attention to how it generalizes HPO and on the existing
approaches for solving the AC problem we used in our experiments. In Sect. 3, we describe
how to use EPMs as surrogates to efficiently benchmark new configurators, introducing the
use of quantile regression forests (Meinshausen 2006) for modelling the performance of
randomized algorithms. In Sect. 4, we apply our surrogates to application scenarios from
AClib, showing that they model target algorithm performance well enough to yield surrogate
AC scenarios which behave qualitatively similarly to the original scenarios, while giving rise
to dramatically (up to 1641 times) faster benchmarking experiments.

2 Background on algorithm configuration

In this section, we provide background information on how AC generalizes HPO and
hence, how this paper addresses challenges that were not addressed by our previous work

123

20 Mach Learn (2018) 107:15–41

(Eggensperger et al. 2015). Furthermore, we briefly describe the existing methods for solving
AC that we used in our experiments.

2.1 AC as a generalization of HPO

Going beyond the high level description of the AC problem given in Eq. (2), more formally
it is defined as follows.

Definition 1 (Algorithm Configuration) An instance of the algorithm configuration problem
is a 6-tuple (A,�,DΠ, κ,F,m) where:

– A is a parameterized target algorithm;
– � is the parameter configuration space of A;
– DΠ is a distribution over a set of instances Π ;
– κ < ∞ is a cutoff time at which each run of A will be terminated;
– F : Π → Rd maps each instance to a d-dimensional vector of characteristics that

describe the instance. This is an optional input; if no features are available, this ismodelled
by setting d to 0;

– m : � × Π → R is a function (e.g., running time) that measures the observed cost of
running A(θ) on an instance π ∈ Π with cutoff time κ .

The goal is to find
θ∗ ∈ argmin

θ∈�

Eπ∼DΠ (m(θ , π)). (3)

Notably, this definition includes a cutoff time since in practice we cannot run algorithms
for an infinite amount of time, and we need to attribute some (poor) performance value to
runs that time out unsuccessfully. We refer to a concrete instantiation of such an AC problem
as an AC scenario.

In most AC scenarios (e.g., those in the algorithm configuration library, AClib), DΠ is
chosen as the uniform distribution over a representative set of instances from Π . In practice,
we use a set of training instances ΠTrain from DΠ to configure our algorithm A and a
disjoint set test instances ΠTest from DΠ to evaluate the performance of the configuration
finally returned by a configurator, also called the final incumbent configuration. Using this
training–test split, we can identify over-tuning effects (Hutter et al. 2009), i.e., improvements
in performance on ΠTrain that do not generalize to ΠTest. We note that it is typically too
expensive to use cross-validation to average over multiple training–test splits, because even
single runs of a configurator often require multiple CPU days.

This general AC problem generalizes the HPO problem described by Eq. (1) in various
ways.

1. Types of target algorithms While HPO only deals with machine learning algorithms,
AC deals with arbitrary ones, such as SAT solvers (Hutter et al. 2017) or configurable
software systems (Sarkar et al. 2015).

2. Performance metricsWhile HPO typically minimizes one of various loss functions con-
cerning the predictions of a machine learning algorithm, AC includes more general
performance metrics, such as running time, approximation error, memory requirements,
plan length, or latency.

3. Randomized algorithms While the definition of HPO in Eq. (1) concerns determinis-
tic algorithms, the general AC problem includes randomized algorithms. For example,
randomized SAT solvers are known to have running time distributions that resemble

123

Mach Learn (2018) 107:15–41 21

exponential distributions (Hoos and Stützle 2004), and it is entirely normal that run-
ning times with two different pseudo-random number seeds can differ by an order of
magnitude.

4. Multiple instances Equation (2) already shows that the goal in the AC problem is to
minimize the given performancemetric on average across instancesπ from a distribution
DΠ . HPO can also be cast as optimization across cross-validation folds, in which case
these are modelled as instances for configurators; these configurators will then evaluate
configurations on one fold at a time and only evaluate additional folds for promising
configurations.

5. Prevalence of many categorical and conditional parameters While the parameter space
in current HPO scenarios is often fairly low-dimensional and continuous, general AC
scenarios often feature many discrete choices between algorithm components, as well as
conditional parameters that only apply to some algorithm components.We note, however,
that high-dimensional spaces with categorical parameters and high degrees of condi-
tionality also exist in HPO, e.g., in the optimization of machine learning frameworks
(Thornton et al. 2013; Feurer et al. 2015a) or architectural optimization of deep neural
networks (Bergstra et al. 2014; Domhan et al. 2015).

6. Features In most AC scenarios, each instance is described by a vector of features. Exam-
ples of such features range from simple problem size measurements to “probing” or
“landmarking” features derived from the behaviour of an algorithm when run on the
instance for a bounded amount of time (e.g., number of restarts or constraint propagations
in the case of SAT). Instance features are a crucial ingredient in EPMs (Leyton-Brown
et al. 2009; Hutter et al. 2014b), which, as mentioned earlier, predict the performance
m(θ , π) of a target algorithm configuration θ on a problem instance π . They have been
studied evenmore extensively in the context of the per-instance algorithm selection prob-
lem (Nudelman et al. 2003, 2004; Xu et al. 2008; Malitsky et al. 2013; Kotthoff 2014;
Lindauer et al. 2015; Bischl et al. 2016), where, given a portfolio of algorithmsP , the goal
is to find a mapping s : Π → P . Thus, feature extractors are available for many prob-
lems, including mixed integer programming (MIP; Leyton-Brown et al. 2009; Kadioglu
et al. 2010; Xu et al. 2011; Hutter et al. 2014b), propositional satisfiability (SAT; Nudel-
man et al. 2004; Xu et al. 2008; Hutter et al. 2014b), answer set programming (ASP;
Maratea et al. 2014; Hoos et al. 2014), and meta-learning (Gama and Brazdil 1995; Köpf
et al. 2000; Bensusan and Kalousis 2001; Guerra et al. 2008; Leite et al. 2012; Reif et al.
2014; Schilling et al. 2015). Recently, Loreggia et al. (2016) proposed the use of deep
neural networks to generate instance features automatically, which may be useful when
expert-crafted features are unavailable.

7. Censored observations For AC scenarios where the goal is to minimize running time, it
is common practice for configurators to terminate poorly performing runs early in order
to save time. This idea is closely related to the idea of racing (Maron and Moore 1994).
This adaptive capping process yields performance measurements that only constitute a
lower bound to the actual running time and need to be modelled as such.

2.2 Algorithm configurators

While the HPO community has focused quite heavily on the Bayesian optimization frame-
work (Brochu et al. 2010; Shahriari et al. 2016), widely studied approaches for AC are more
diverse. These include ParamILS, which performs iterated local search (Hutter et al. 2009),
GGA, which leverages genetic algorithms (Ansótegui et al. 2009, 2015), irace, a general-
ization of racing methods (López-Ibáñez et al. 2016; Lang et al. 2015), OpenTuner, which

123

22 Mach Learn (2018) 107:15–41

leverages bandit solvers on top of a set of search heuristics (Ansel et al. 2014), SMAC, an
approach based on Bayesian optimization (Hutter et al. 2011b), and ROAR, the specializa-
tion of this method to random sampling without a model. We experimented with all of these
methods except GGA and OpenTuner, the former because in its current version it is not fully
compatible with the algorithm configuration scenarios used in our experiments, and the latter
because it does not consider problem instances and is therefore not efficiently applicable to
our algorithm configuration scenarios, which vary substantially across instances.

We now give more complete descriptions of the state-of-the-art configurators used in our
experiments: ParamILS, irace, ROAR and SMAC.

ParamILS (Hutter et al. 2009) combines iterated local search (i.e., hill climbing in a discrete
neighborhood with perturbation steps and restarts) with methods for efficiently comparing
pairs of configurations. Due to its local search approach, ParamILS usually compares pairs of
configurations that differ in only one parameter value, but occasionally jumps to completely
different configurations.When comparing a pair of configurations, assessing performance on
all instances is often far too expensive (e.g., requiring solving hundreds of SAT problems).
Thus, the FocusedILS variant of ParamILS we consider here uses two methods to quickly
decide which of two configurations is better. First, it employs an intensificationmechanism to
decide howmany instances to run for each configuration (startingwith a single run and adding
runs only for high-performing configurations). Second, it incorporates adaptive capping—a
technique based on the idea that, when comparing configurations θ1 and θ2 with respect
to an instance set Πsub ⊂ Π , evaluation of θ2 can be terminated prematurely when θ2’s
aggregated performance on Πsub is provably worse than that of θ1.

irace (López-Ibáñez et al. 2016) is based on the F-race procedure (Birattari et al. 2002),
which aims to quickly decide which of a sampled set of configurations performs significantly
best. After an initial race among uniformly sampled configurations, irace adapts its sampling
distribution according to these results, aiming to focus on promising areas of the configuration
space.

ROAR (Hutter et al. 2011b) samples configurations at random and uses an intensification
and adaptive capping scheme similar to that of ParamILS to determine whether the sampled
configuration should be preferred to the current incumbent. As shown byHutter et al. (2011b),
despite its simplicity, ROAR performs quite well on some algorithm configuration scenarios.

SMAC (Hutter et al. 2011b) extends Bayesian optimization to handle the more general
AC problem. More specifically, it uses previously observed 〈θ , π,m(θ , π)〉 pairs to learn
an EPM to model pm̂(m | θ , π). This EPM is used in a sequential optimization process as
follows. After an initialization phase, SMAC iterates over the following three steps: (1) use
the performance measurements observed so far to fit a marginal random forest model f̂ (θ) =
Eπ∼Πtrain

[
m̂(θ , π)

]
; (2) use f̂ to select promising configurations �next ⊂ � to evaluate

next, trading off exploration in new parts of the configuration space and exploitation in parts
of the space known to perform well by blending optimization of expected improvement with
uniform random sampling; and (3) run the configurations in �next on one or more instances
and compare their performance to the best configuration observed so far. SMAC also uses
intensification and adaptive capping. However, since adaptive capping leads to right-censored
data (i.e., we stop a target algorithm run before reaching the running time cutoff because we
already know that it will perform worse than our current incumbent), this data is imputed
before being passed to the EPM (Schmee and Hahn 1979; Hutter et al. 2011a).

123

Mach Learn (2018) 107:15–41 23

3 Surrogates of general AC benchmarks

In this section, we show how to construct surrogates of general AC scenarios. In contrast to
our earlier work on surrogate scenarios of the special case of HPO (Eggensperger et al. 2015),
here we need to take into account the many ways in which AC is more complex than HPO
(see Sect. 2.1). In particular, we describe the choices we made to deal with multiple instances
and high-dimensional feature spaces; high-dimensional and partially categorical parameter
spaces; censored observations; different performance metrics (in particular running time);
and randomized algorithms.

3.1 General setup

To construct the surrogate for an AC scenario X , we train an EPM m̂ on performance data
previously gathered on scenario X (see Sect. 3.2). The surrogate scenario X ′

m̂ based on EPM
m̂ is then structurally identical to the scenario X in all aspects except that it uses predictions
instead of measurements of the true performance; in particular, the surrogate’s configuration
space (including all parameter types and domains) and configuration budget are identical to
X . Importantly, the wall clock time to run a configurator on X ′

m̂ can be much lower than that
required on X , since expensive evaluations in X can be replaced by cheap model evaluations
in X ′

m̂ .
Our ultimate aim is to ensure that configurators perform similarly on the surrogate sce-

nario as on the original scenario. Since effective configurators spend most of their time in
high-performance regions of the configuration space, and since relative differences between
the performance of configurations in such high-performance regions tend to impact which
configuration will ultimately be returned, accuracy in high-performance regions of the space
is more important than in regions where performance is poor. Training data should there-
fore be sampled primarily in high-performance regions. Our preferred way of doing this is
to collect performance data primarily via runs of existing configurators. As an additional
advantage of this strategy, we can obtain this costly performance data as a by-product of
executing configurators on the original scenario.

In addition to gathering data from high-performance regions of the space, it is also impor-
tant to cover the entire space, including potentially low-performance regions. To get samples
that are neither biased towards good nor bad configurations, we also included performance
data gathered by random search. (Alternatively, one could use grid search, which can also
cover the entire space.We did not adopt this approach, because it cannot deal effectively with
large parameter spaces.)

1. Inactive parameters were replaced by their default values, or if no default value was
specified, by the midpoint of their range of values;3

2. Since our EPMs handle categorical variables natively (see Sect. 3.3), we did not need
to encode these. For EPMs that cannot handle categorical variables (e.g., a Gaussian
process with a Matérn kernel), we would apply a one-hot-encoding4 to the categorical
parameter values;

3. We observed that for most algorithms there were parameter combinations that led to
crashes (Hutter et al. 2010; Manthey and Lindauer 2016). In our experiments, we only

3 There exist other imputation strategies formissing values (e.g., mean,median,most frequent). In preliminary
experiments, we also tried to impute inactive parameters with values outside of their value ranges, but this
made no difference in the accuracy of our trained RF-based EPMs.
4 One-hot-encoding encodes a categorical variable with k possible values by introducing k binary variables
and setting to 1 the binary variable that corresponds to the original variable value, setting all others to zero.

123

24 Mach Learn (2018) 107:15–41

used successful runs (i.e., returning a correct solution within the time budget) and time-
outs, as our models cannot classify target algorithm runs into successful and failed runs.5

3.2 What kind of data to collect regarding instances?

EPMs for general AC need to make accurate predictions in both the spaces of parameter
configurations and of problem instances (in contrast to the special case ofHPO that focuses on
the configuration space). This opens up another design dimension for gathering training data:
which problem instances should we solve in order to gather data for our model? Algorithm
configuration scenarios typically come with fixed sets of training and test instances, ΠTrain

and ΠTest. In typical applications of EPMs, we only use data from ΠTrain to build our model
and use ΠTest to study its generalization performance in the instance space. If our objective,
however, is only to construct surrogate scenarios that resemble the original scenarios, then
it is never necessary to generalize beyond the instances in the fixed sets ΠTrain and ΠTest;
to see this, recall that a table-based surrogate is the perfect solution for small configuration
spaces, despite the obvious fact that it would not generalize. Restricting the data for our EPM
to instances from ΠTrain is therefore an option, but we can expect better performance if we
build our model based on instances from both ΠTrain and ΠTest. In order to assess how the
choice of instances used by the EPM affects our surrogate scenario, we studied two different
setups:

I AC and random runs onΠTrain This option only collects data for the EPM onΠTrain and
relies on the EPM to generalize toΠTest. Specifically, we ran n independent configurators
runs on ΠTrain (in our experiments, n was 10 for each configurator) and also evaluated
k runs of randomly sampled 〈θ , π〉 pairs with configurations θ ∈ � and instances π ∈
ΠTrain (in our experiments, k was 10 000).

II Add incumbents onΠT est This option includes all the runs fromSetting I, but additionally
uses some limited data from instances ΠTest. Namely, it also evaluates the performance
of the configurators’ incumbents (i.e., their best parameter configurations over time) on
ΠTest. This is regularly done for evaluating the performance of configurators over time
and thus comes at no extra cost for obtaining data for the EPM.

Details on the datasets used for each of these setups are shown in Table 3. We also tried
more expensive setups, such as configuration on ΠTrain ∪ ΠTest, to achieve better coverage
of evaluated configurations θ ∈ � on ΠTest and not only incumbent configurations with
good performance. Preliminary experiments indicated that such more expensive setups did
not improve the accuracy of our surrogate scenarios in comparison to the results for Setting
II, which we show in Sect. 4.

3.3 Choice of regression models for typical AC parameter spaces

In previous work, Hutter et al. (2014b) and Eggensperger et al. (2015) considered several
common regression algorithms for predicting algorithm performance: random forests (RFs;
Breimann 2001), Gaussian processes (GPs; Rasmussen and Williams 2006), gradient boost-
ing, support vector regression, k-nearest-neighbours, linear regression, and ridge regression.
Overall, the conclusion of those experiments was that RFs and GPs outperformed the other
methods for this task. In particular, GPs performed best with few continuous parameters
(≤ 10) and few training data points (≤ 20 000); and RFs performed best both when there

5 An alternative to removing the crashed runs would be to model them explicitly as unknown constraints
(Gelbart et al. 2014).

123

Mach Learn (2018) 107:15–41 25

Table 1 Overview of the hyperparameter ranges used to optimize the RMSE of the random forest and the
optimized hyperparameter configuration

Hyperparameter Ranges Optimized setting

bootstrapping {True,False} False

frac_points [0.001,1] 0.8

max_nodes [10, 100,000] 50,000

max_depth [20, 100] 26

min_samples_in_leaf [1,20] 1

min_samples_to_split [2,20] 5

frac_feats [0.001,1] 0.28

num_trees [10,50] 48

were many training samples and when parameter spaces were either large or included cate-
gorical and continuous parameters.

Since our focus here is on general AC problems that typically involve target algorithms
with more than 10 categorical and continuous parameters (see Sect. 4), we limit ourself to
RFs in the following. We used our own RF implementation since it natively handles cate-
gorical variables. Somewhat surprisingly, in preliminary experiments, we observed that, in
our application, the generalization performance of RFs was sensitive to their hyperparame-
ter values. Therefore, we optimized these RF hyperparameters by using SMAC across four
representative datasets from algorithm configuration (with 5000 subsampled data points and
at most 400 function evaluations); the resulting hyperparameter configuration is shown in
Table 1. Our RF implementation is publicly available as an open-source project in C++ with
a Python interface at https://bitbucket.org/aadfreiburg/random_forest_run.

3.4 Handling widely-varying running times

In AC, a commonly used performance metric is algorithm running time (which is to be
minimized). The distribution of running times can strongly vary between different classes of
algorithms. In particular algorithms for hard combinatorial problems (e.g, SAT, MIP, ASP)
have widely-varying running times across instances. For this reason, we predict log running
times log(t) insteadof running times. In log space, the noise is distributed roughly according to
a Gaussian, which is the assumption underlying many machine learning algorithms (notably,
including RFs minimizing the sum of squared errors).

3.5 Imputation of right-censored data

When considering scenarios in which running time is to be minimized, many configurators
use an adaptive capping mechanism to limit algorithm runs to running time κ comparable to
the running time of the best seen configuration (see Sect. 2.2). This results in so-called right-
censored data points for which we only know a lower bound m′ on the true performance:
m′(θ , π) ≤ m(θ , π). Configurators tend to produce many such right-censored data points
(in our experiments, 11–38%), and simply discarding these can introduce sizeable bias. We
therefore prefer to impute the corresponding running times; as shown byHutter et al. (2011a),
doing so can improve the predictive accuracy of SMAC’s EPMs.

123

https://bitbucket.org/aadfreiburg/random_forest_run

26 Mach Learn (2018) 107:15–41

Algorithm 1: Imputation of censored data
Input : Uncensored data Xu, yu, Censored data Xc, yc
Output : Imputed values yimp for Xc

1 EPM.fit(Xu, yu);
2 while not converged do
3 foreach censored sample i do

4 μ, σ 2 := EPM.predict(X(i)
c);

5 y(i)
imp := mean ofN (μ, σ 2)≥y(i)

c
;

6 EPM.fit(Xu||Xc, yu||yimp);

7 return yimp

Following Schmee and Hahn (1979) and Hutter et al. (2011a), we use Algorithm 1, which
is not specific to RFs, to impute right-censored running time data. We use all uncensored
data points, along with their true performance, and all censored data as input. First, we train
the EPM on all uncensored data (Line 1). We then compute, for each censored data point, the
mean μ and variance σ 2 of the predictive distribution. Since we know a lower bound y(i)

c on
the data point’s true running time, we use a truncated normal distribution N (μ, σ 2)≥y(i)

c
to

update our belief of the true value of y(i) (Lines 4 and 5). Next, we refit our EPM using the
uncensored data and the newly imputed censored data (Line 6). We then iterate this process
until the algorithm converges or until 10 iterations have been performed.

3.6 Handling randomized algorithms

Many algorithms are randomized (e.g., RFs or stochastic gradient descent in machine learn-
ing, or stochastic local search solvers in SAT solving). In order to properly reflect this in
our surrogate scenarios, we should take this randomization into account in our predictions.
Earlier work on surrogate scenarios (Eggensperger et al. 2015) only considered deterministic
algorithms and only predicted means; when these methods are applied to randomized algo-
rithms, the result is a deterministic surrogate that can differ qualitatively from the original
scenario.

Instead, we need to predict the entire distribution P(Y |X) and, when asked to output the
performance of a single algorithm run, draw a sample from it. Unfortunately, we do not
know in advance the closed form performance distribution—if we knew the running time
distributions, we could exploit them in the construction of our EPM (see, e.g., Arbelaez et al.
2016). Instead, to obtain a general solution, we propose to use quantile regression (Koenker
2005; Takeuchi et al. 2006). FollowingMeinshausen (2006), the α-quantile Qα(x) is defined
by

Qα(x) = inf{y : P(Y ≤ y|X = x) ≥ α} (4)

where the aim is to search for a solution to Eq. (4) such that the probability of Y ≤ y is larger
than α.

Since we already know that random forests perform well as EPMs (Hutter et al. 2014b;
Eggensperger et al. 2015), we use a quantile regression forest (QRF; Meinshausen 2006)
for the quantile regression. The QRF is very similar to a RF of regression trees: instead of
returning themean over all labels in the selected leafs of the trees, it returns a given quantile of
these labels, Qα(x). In our surrogate scenarios, when asked to predict a randomized algorithm

123

Mach Learn (2018) 107:15–41 27

performance on x = 〈θ, π〉 with seed s, we use s to randomly sample a quantile α ∈ [0, 1]
and simply return Qα(θ , π). For a deterministic algorithm, we return the median Q0.5(θ , π).

4 Experiments for algorithm configuration

Next, we report experimental results for surrogates based on QRFs in the general AC setting.
All experiments were performed on Xeon E5-2650 v2 CPUs with 20MB Cache and 64GB
RAM running Ubuntu 14.04 LTS.

In the following, we first describe the scenarios we used to evaluate our approach. Then,
we report results for the predictive quality of EPMs based on QRFs. Finally, we show that
these EPMs are useful as surrogate scenarios, based on an evaluation of the performance of
ParamILS (Hutter et al. 2009), ROAR and SMAC (Hutter et al. 2011b), and irace (López-
Ibáñez et al. 2016) on our surrogate scenarios and theAC scenarios fromwhich our surrogates
were derived. For all experiments, we preprocessed the data as described in Sect. 3.1, imputed
right-censored data as described in Algorithm 1, and then trained a QRF as described in
Sect. 3.6, with the logarithm of the penalized average running time (PAR10) serving as the
response variable for running time optimization scenarios.6

4.1 Algorithm configuration benchmarks from AClib

For our experiments, we took our scenarios from the algorithm configuration library AClib
(Hutter et al. 2014a, see www.aclib.net). Our first set of scenarios involves running time
minimization; these consist of different instance sets taken from each of four widely stud-
ied combinatorial problems (mixed-integer programming (MIP), propositional satisfiability
(SAT), AI planning, and answer set programming (ASP)) and one or more different solvers
for each of these problems (CPLEX ,7 Lingeling by Biere (2014), ProbSAT by Balint and
Schöning (2012), Minisat-HACK-999ED by Oh (2014), Clasp by Gebser et al. (2012), and
lpg by Gerevini and Serina (2002)). We used the training-test splits defined in AClib. Key
characteristics of these scenarios are provided in Table 2, and the underlying AC scenarios
are described in detail in Appendix A.

Since AC is a generalization of HPO, we also generated two surrogate HPO scenarios,
which allows us to situate our new results in the context of our previous work (Eggensperger
et al. 2015). In these new scenarios, we optimized for misclassification rate (1− accuracy) on
10-fold cross-validation on training data (90%of the data and then validated themodel trained
on all of the training data with the final parameter configurations on held-out test data (10%
of the data). We considered each cross-validation split to be one instance. We used pseudo
instance features in these scenarios by simply assigning the i-th split to feature value i and the
test data with feature value k + 1 (i.e., 11). Inspired by the automated machine learning tool
auto-sklearn (Feurer et al. 2015a) and available at https://bitbucket.org/mlindauer/aclib2, we
configured a SVM (Cortes and Vapnik 1995) on MNIST8 and xgboost (Chen and Guestrin
2016) on covertype9 (Collobert et al. 2002).

6 PAR10 averages all running times, counting each capped run as having taken 10 times the running time
cutoff κ (Hutter et al. 2009).
7 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.
8 http://www.openml.org/d/554.
9 http://www.openml.org/d/293.

123

www.aclib.net
https://bitbucket.org/mlindauer/aclib2
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.openml.org/d/554
http://www.openml.org/d/293

28 Mach Learn (2018) 107:15–41

We ran SMAC,ROAR, andParamILS ten times for each running time optimization scenario
in order to collect performance data in regions that are likely to be explored by one or
more configurators. For the HPO scenarios, we additionally ran irace ten times.10 We report
properties of the resulting datasets in Table 3. As described in Sect. 3.2, we used two different
setups to collect training data for our EPMs. Due to memory limitations on our machines,
we used at most 1 million data points to train our EPMs. If we collected more than 1 million
points, we subsampled them to 1 million.

4.2 Evaluation of raw model performance

We now report the predictive performance of QRFs as EPMs. In past work (Hutter et al.
2014b), we performed a similar analysis using random forests as EPMs.However, the training
data differed substantially from the data we use in this work. In particular, we uniformly
sampled sets of target algorithm configurations and problem instances, and then gathered
a performance observation for every entry in the Cartesian product of these sets. Here, in
contrast, we use configurators to bias training data towards high-performance regions of the
given configuration space; this results in a larger number of configurations in our training
data, many of which are evaluated only on few instances. The question of whether effective
EPMs can be trained using such sparse and biased data has not previously been studied and
is an essential requirement for inclusion in our surrogate scenarios.

In Table 4, we show the predictive accuracy of our trained EPMs based on root mean
squared error (RMSE; in log space for running time scenarios) to estimate how far our
predictions are from true performance values, and Spearman’s rank correlation coefficient
(CC; Spearman 1904) to assess whether we can accurately rank different configurations
based on predicted performance values. The latter metric is particularly useful in the context
of surrogate scenarios, because an configurator can make correct decisions as long as the
ranking of configurations is correct, i.e., the EPM predicts poorly performing configurations
to be bad and strong configurations to be good.

To obtain an unbiased estimate of generalization performance, we used a leave-one-run-
out validation splitting scheme: in each split, we used all but one run of each configurator
as training data and evaluated the EPM trained on this data on the remaining runs. All
configurators are randomized, and we independently initialized each configurator run with a
different random seed. Therefore, all data points evaluated by a singleAC run are independent
of the points of a different AC run, even though the two runsmay contain identical data points.

Table 4 shows our results on held out data, specifically all data collected while configuring
the target algorithm on ΠTrain as well as on all data collected during the validation of the
incumbent configurations on ΠTest. As expected, the predictive performance of our EPM
on ΠTrain is quite similar between Setting I and II. However on ΠTest, Setting II performed
significantly better than Setting I across our scenarios (p-values of 0.0021 on RMSE and
0.0067 on CC based on a one-sided, non-parametric permutation test, cf. Hoos (2017)).
Overall, our EPMs yielded rather accurate target algorithm performance predictions, and
achieved high overall correlation (CC ≥ 0.75) in 9 out of 11 scenarios wrt ΠTrain and
in all scenarios wrt ΠTest using Setting II. The RMSE on the running time scenarios was
substantially smaller than 1.0, i.e., the predictions were less than one order of magnitude off
on average. Considering the HPO scenarios, our models were more accurate for svm-mnist
than they were for xgboost-covertype. This difference was driven by timeouts (counted using
the maximal error value of 1). For svm-mnist, these timeouts were easier to predict (mostly

10 Since irace (2.4) does not implement an adaptive capping mechanism, its authors recommend that it should
not be used for running time minimization.

123

Mach Learn (2018) 107:15–41 29

Ta
bl
e
2

Pr
op

er
tie

s
of

ou
r
A
C
sc
en
ar
io
s

#
Pa
ra
m
et
er

ca
./i
nt
./c
o.
(c
on
d.
)

#
In
st
an
ce

fe
at
ur
es

To
ta
l

#
In
st
an
ce
s
tr
ai
n/
te
st

C
on
f
bu
dg
et

C
ut
of
f
κ

C
P
L
E
X
-R
eg
io
ns

63
/7
/4

(4
)

14
8

22
2

10
00

/1
00

0
2

10
,0
00

C
P
L
E
X
-R
C
W
2

63
/7
/4

(4
)

14
8

22
2

49
5/
49

5
5

10
,0
00

C
la
sp
-R
oo

ks
38

/3
0/
7
(5
5)

11
9

19
4

48
4/
35

1
2

30
0

L
in
ge
li
ng

-C
F

13
7/
18

5/
0
(0
)

11
9

44
1

29
9/
30

2
2

30
0

P
ro
bS

A
T-
7S

A
T

5/
1/
3
(5
)

13
8

12
8

25
0/
25

0
2

30
0

M
in
iS
A
T
H
ac
k-
K
3

10
/0
/0

(0
)

11
9

12
9

30
0/
25

0
2

30
0

L
P
G
-S
at
el
li
te

48
/5
/1
4
(2
2)

30
5

37
2

20
00

/2
00

0
2

30
0

L
P
G
-Z
en
ot
ra
ve
l

48
/5
/1
4
(2
2)

30
5

37
2

20
00

/2
00

0
2

30
0

C
la
sp
-W

S
61

/3
0/
7
(6
3)

38
13

6
24

0/
24

0
4

90
0

sv
m
-m

ni
st

2/
1/
3
(2
)

1
7

10
/1

50
0

10
00

xg
bo
os
t-
co
ve
rt
yp
e

0/
2/
9
(0
)

1
12

10
/1

50
0

10
00

W
e
re
po

rt
th
e
si
ze

of
th
e
co
nfi

gu
ra
tio

n
sp
ac
es

�
fo
r
th
e
di
ff
er
en
t
ki
nd

s
of

pa
ra
m
et
er
s
(i
.e
.,
ca
te
go

ri
ca
l,
in
te
ge
r-
va
lu
ed
,
co
nt
in
uo

us
an
d
co
nd

iti
on

al
s)
,
th
e
nu

m
be
r
of

in
st
an
ce

fe
at
ur
es
,t
he

to
ta
ln

um
be
r
of

in
pu

tf
ea
tu
re
s
fo
r
ou

r
E
PM

s
(#
pa
ra
m
et
er
s
+
#f
ea
tu
re
s)
,t
he

nu
m
be
r
of

tr
ai
ni
ng

an
d
te
st
in
st
an
ce
s,
th
e
co
nfi

gu
ra
tio

n
bu
dg
et
fo
r
ea
ch

co
nfi

gu
ra
to
r
ru
n

(i
n
da
ys

fo
r
co
m
bi
na
to
ri
al
pr
ob

le
m
s
an
d
nu

m
be
r
of

fu
nc
tio

n
ev
al
ua
tio

ns
fo
r
H
PO

sc
en
ar
io
s)
an
d
th
e
ru
nn

in
g
tim

e
cu
to
ff
fo
r
ea
ch

ta
rg
et
al
go

ri
th
m

ru
n
(i
n
se
co
nd
s)

123

30 Mach Learn (2018) 107:15–41

Table 3 Properties of our datasets

I II
#data
1000 %cen %to #data

1000 %cen %to #conf
1000

CPLEX-Regions 656 27 0 825 22 <1 198

CPLEX-RCW2 166 38 2 217 29 1 80

Clasp-Rooks 245 14 3 310 11 5 63

Lingeling-CF 149 21 9 176 17 9 66

ProbSAT 199 17 3 245 14 3 28

MiniSATHack-K3 177 16 2 218 13 2 37

LPG-Satellite 565 27 <1 969 16 <1 252

LPG-Zenotravel 685 26 <1 >1K 17 1 204

Clasp-WS 172 17 4 207 14 4 56

svm-mnist 29 – 53 29 – 52 19

xgboost-covertype 30 – 4 30 – 2 22

We list the rounded number/1000 of collected 〈θ , π〉 pairs of 10 runs of each configurator and the ratio of right-
censored runs (#cen) and timeouts (#to) for each of our settings: I, II. We also report the total number/1000
of different configurations (#conf)

driven by a small number of parameters); in contrast, a potential timeout could depend on
more complex interactions of parameters in the case of xgboost-covertype. The predictions
for non-timeout runs for xgboost-covertype were roughly as good as for svm-mnist. Since
Setting II performed consistently better than Setting I, in the following we consider only
Setting II.11

4.3 Qualitative evaluation of surrogate scenarios

We now turn to the most important experimental question: how well our QRF-based EPMs
work as surrogate scenarios for algorithm configurators. For these experiments, we trained
and saved aQRFmodel on the imputed data fromour Setting II (described above). To evaluate
these EPMs asAC scenarios, we re-ran our configuration experiments, now obtaining running
timemeasurements from anEPM (running as a background process) rather than the real target
algorithm. Doing so reduced the average CPU time required for evaluating a configuration
on a single instance from 27.29 ± 100.26 (μ ± σ) to 0.23 ± 0.13s.

We also considered leave-one-configurator-out (LOCO) surrogate scenarios. To construct
these, we trained the EPM on data gathered by all but one configurator, and then ran the
remaining configurator on this surrogate scenario. With this, we simulate benchmarking a
newconfiguratorwithout having anyprior knowledge about the behaviour of this configurator.

11 To study whether it is necessary for our model to distinguish different instances, we also considered
another baseline, inspired by a metric used by Soares and Brazdil (2004): We computed the rank correlation
between the true running times and the mean running times per configuration across instances (aka mean
regressor). A low correlation coefficient indicates that the instances differ in hardness or that the rank of
configurations changes between instances. Indeed, for most of our scenarios we obtained a low correlation
coefficient CC ≤ 0.35, indicating that it was necessary for the model to consider instances to obtain accurate
predictions. For svm-mnist, xgboost-covertype, LPG-Satellite, and LPG-Zenotravel, we obtained CC ≥ 0.79
for data points used during validation, showing that the instances in these scenarios are rather similar (We
note that these numbers are based on observed runs and not for predicting performance on unseen instances
or configurations).

123

Mach Learn (2018) 107:15–41 31

Table 4 Leave-one-run-out model performance

RMSE CC

Configuration Validation Configuration Validation

I II I II I II I II

CPLEX-Regions 0.2 0.19 0.33 0.2 0.92 0.92 0.67 0.9

CPLEX-RCW2 0.12 0.12 0.08 0.08 0.98 0.98 0.99 0.99

Clasp-Rooks 0.35 0.35 0.49 0.42 0.98 0.98 0.98 0.98

Lingeling-CF 0.35 0.35 0.72 0.31 0.86 0.86 0.7 0.93

ProbSAT-7SAT 0.6 0.6 0.82 0.54 0.69 0.69 0.36 0.78

MiniSATHack-K3 0.27 0.27 0.48 0.24 0.96 0.96 0.89 0.97

LPG-Satellite 0.1 0.1 0.14 0.13 0.8 0.8 0.92 0.92

LPG-Zenotravel 0.27 0.29 0.38 0.39 0.7 0.69 0.78 0.77

Clasp-WS 0.31 0.31 0.64 0.42 0.95 0.95 0.85 0.95

svm-mnist 0.06 0.06 0.06 0.02 0.99 0.99 0.7 0.75

xgboost-covertype 0.25 0.26 0.17 0.14 0.87 0.85 0.85 0.85

We report mean root mean squared error (RMSE) and Spearman’s rank correlation coefficient (CC)between
true and predicted loss (for HPO scenarios; last two rows) and log PAR10 running times (for AC scenarios; all
other rows), and across ten runs for which the EPM was trained using data from setting I or II (see Sect. 4.1).
For each run, we trained an EPM on all but one configuration run for each considered configurator and report
average results across left-out runs. Using the QRF, we predicted the median. We report results on all data
collected during configuring the target algorithm on πTrain and the data collected during the validation of the
incumbent configurations on πTest

When used in the context of AC scenarios, the absolute quality of running time predictions
is less important than the ranking of the configurators. Therefore we studied performance as
a function of time to visually compare the behaviour of different configurators on the original
and surrogate scenarios; see Fig. 3. We observe that the relative rankings between config-
urators were well preserved for surrogate scenarios using EPMs trained on all data. SMAC
was correctly predicted to outperform ROAR in all AC scenarios and at almost all time steps.
ParamILS’s performance was predicted slightly less well, but ranks were still preserved well
across scenarios and time steps. Also, the EPM-based surrogate scenarios captured over-
tuning effects as present in LPG-Zenotravel and CPLEX-RCW2. For the machine learning
scenarios, we obtained almost perfect surrogate scenarios, with irace and ParamILS per-
forming similarly, although ParamILS achieved a slightly higher inter-quartile ratio on the
surrogate than on the original scenario.

In the LOCO setting (Fig. 3, right column), the relative performance of SMAC and ROAR
was still predicted correctly throughout except for theLPG-Zenotravel scenario,where SMAC
and ROAR did not improve as much as on the original scenario. ParamILS, again, was pre-
dicted slightly worse, but its relative ranks were still predicted correctly, with two exceptions.
First, on the LOCO surrogate of scenarioCPLEX-RCW2,ParamILS performedworse than on
the original scenario (and could not find a configuration better than the default). Second, on the
LOCO surrogate of scenario Clasp-WS, ParamILS performed better than on the original sce-
nario. We believe that our worse results for ParamILS were due to the substantial differences
in search strategies between ParamILS and the other configurators, leading to qualitatively
different sets of performance data and hence EPMs; surrogate scenarios constructed based
on data from global search algorithms intuitively capture areas of weak/strong performance

123

32 Mach Learn (2018) 107:15–41

Original Scenario QRF Surrogate Scenario QRF Surrogate Scenario
All Data/Setting II LOCO/Setting II

CPLEX-RCW2

Clasp-Rooks

LPG-Zenotravel

Clasp-WS

svm-mnist

Fig. 3 Best performance of a configuration of the target algorithm (y-axis) found by different configurators
versus configuration budget (x-axis). We plot median and quartile of best performance across 10 runs of each
configurator on the original scenario (left) and on QRF-based surrogate scenarios trained either on data from
all configurators (middle) or leave-one-configurator-out data (right). Please note that for our AC surrogate
scenarios configuration budget [sec] does not refer to the actual running time, but to predicted running times.
The surrogate scenarios needed less time to run, as shown in Table 6

123

Mach Learn (2018) 107:15–41 33

Table 5 Overview of our error metric quantifying the degree to which using surrogates in performance
comparisons between two given configurators yielded results statistically significantly different from those
obtained based on the underlying original scenarios

Original\surrogate Better Equal Worse

Better 0 0.5 1

Equal 0.5 0 0.5

Worse 1 0.5 0

well, but do not necessarily capture fine local variation and may thus (as discussed above)
not work as well for gradient-following configurators.

4.4 Quantitative evaluation of surrogate scenarios

To also provide a quantitative evaluation of how closely our surrogate scenarios resembled the
original scenarios, we used an error metric based on the idea that a surrogate scenario should
preserve the outcomes of pairwise comparisons of configurators obtained on the underlying
original scenarios, across different overall running time budgets. To deal with performance
variability due to randomization in target algorithm and configurator runs, we applied statis-
tical tests to determine whether one configurator performed significantly better than another.
For each running time budget (number of target algorithm or surrogate evaluations, resp.)
starting from κ (or 2), we used a Kruskal–Wallis test and a pairwise post-hocWilcoxon rank-
sum test with Bonferroni’s multiple testing correction (α = 0.05). Table 5 shows how our
metric penalizes differences in the outcomes of this statistical test between the original and
the surrogate versions of a scenario. This metric was inspired by Leite and Brazdil (2010),
but we additionally penalized the case in which true performance values do not differ sig-
nificantly while our surrogate-based predictions do. To obtain our overall error values, we
averaged across the values of this metric for each pair of configurators in our comparison
and then averaged the error values thus obtained over the different time budgets considered.
We note that this metric provides a quantitative measure of the similarity of the qualitative
trajectory diagrams shown in Fig. 3.

In Table 6, we report this metric for both surrogates based on all data and for the LOCO
setting. All our surrogate scenarios achieved an error lower than 0.5, which indicates that, on
average, using our surrogates produces behaviour qualitatively similar to that observed for the
underlying target algorithms. In most LOCO experiments, we observed slightly higher error
values (albeit still below 0.5), because our EPMs had never seen data from the configurator
that was run on the respective surrogate scenario. On the ProbSAT scenario, the configurators
running on surrogates exhibited qualitatively similar behaviour as on the original scenario
and achieved an error of 0, although the EPMs were relatively weak (comparatively high
RMSE and low CC; see Table 4). This occurred because ProbSAT only has a few important
parameters, which all configurators identified on the original and surrogate scenarios. For
CPLEX-Regions, Table 6 reports the highest difference between the error on all data and
the LOCO setting. In our experiments we observed that for this scenario, SMAC achieved
similar performance to ROAR in the LOCO setting, whereas it performed substantially better
on the original scenario. This resulted in a high value of our metric. We observed a similar
phenomenon on xgboost-covertype, where ParamILS found a significantly better-performing
configuration earlier and therefore constantly added to the error. Overall, our results indicate

123

34 Mach Learn (2018) 107:15–41

Table 6 The weighted average difference between configurator performance on the original and surrogate
scenarios, averaged over time (left; see the text for details on the error metric) and mean running time of
individual real target algorithm runs (in CPU seconds), along with the speedup gained when using surrogate
scenarios (right). Single predictions in our surrogate-based scenarios required 0.23 ± 0.13s

Scenario All data LOCO Mean running time Speed up

CPLEX-Regions 0.17 0.47 7.3 36

CPLEX-RCW2 0.08 0.25 82.1 497

Clasp-Rooks 0.07 0.05 21.3 128

Lingeling-CF 0.1 0.12 36 199

ProbSAT-7SAT 0 0.17 26.5 159

MiniSATHack-K3 0.02 0 30.1 183

LPG-Satellite 0 0.05 8.21 34

LPG-Zenotravel 0.1 0.12 6.79 22

Clasp-WS 0.07 0.15 61.4 383

svm-mnist 0.01 0.05 658 1641

xgboost-covertype 0.18 0.21 566 1434

that the relative performance of configurators on surrogate-based scenarios largely resem-
bled that observed on scenarios involving much costlier target algorithm runs, but that the
resemblance was greater when our surrogates were trained based on all available data.

In Table 6, we also report average speedups gained per target algorithm run. Our surrogate
scenarios allow dramatic speedups in experimentation, cutting down the time required for
the evaluation of individual configurations by a factor of over 1000 for the most expensive
AC scenarios.12 This will substantially ease the development of configurators by facilitating
unit testing, debugging, and whitebox testing. Furthermore, the behaviour of configurators
on standard scenarios involving actual target algorithm runs was captured closely enough by
our surrogate-based scenarios that it makes sense to use the latter in comparative performance
evaluations of configurators.

5 Conclusion

We presented a novel approach for constructing model-based surrogate scenarios for the gen-
eral problemofAC—subsumingHPO.Our surrogate scenarios replace expensive evaluations
of algorithm configurations by cheap performance predictions based on EPMs, with orders-
of-magnitude speedups for individual evaluations. Our efficient surrogate scenarios can (i)
substantially speed up debugging and unit testing of configurators, (ii) facilitate white-box
testing, and (iii) provide a basis for assessing and comparing configurator performance.

To construct EPMs for using them as surrogates in AC scenarios, we proposed the use
of configurators for generating training data for EPMs, thereby focusing on the more rele-
vant high-performance regions of the parameter configuration space. We further addressed
challenges inherent to the AC problem by studying different ways to collect data on training
and test instances, imputation of right-censored data, and predicting the performance of ran-

12 We note, however, that this does not imply that entire configurator runs are sped up by the same factor: any
overheads of the configurator itself (e.g., in the case of SMAC for model building and the internal optimization
of its acquisition function) also occur for the surrogate-based scenarios and reduce speedups accordingly.

123

Mach Learn (2018) 107:15–41 35

domized algorithms via novel EPMs based on quantile regression forests. In comprehensive
experiments with scenarios from AClib, we showed that our surrogate scenarios were well
able to stand in for AC scenarios.

While in this work, we focused on either predicting running time for AC scenarios or loss
for HPO scenarios, in general, EPMs could also be trained to predict multiple objectives,
such as running time and loss. We defer constructing such more complex surrogate scenarios
to future work.

An issue arises from large amounts of target algorithm performance data; for some of our
AC scenarios, we had over 1 million data points available, which we subsequently had to
subsample to avoid memory issues in the construction of EPMs; however, better solutions
to this problem can likely be devised. Since deep neural networks have recently shown
impressive results for big data sets and natively support training in batches, we plan to study
scalable Bayesian neural networks (Neal 1995; Blundell et al. 2015; Snoek et al. 2015;
Springenberg et al. 2016) to predict the performance of randomized algorithms.

Acknowledgements We thank Stefan Falkner for the implementation of the quantile regression forest used
in our experiments and for fruitful discussions on early drafts of the paper. K. Eggensperger, M. Lindauer and
F. Hutter acknowledge funding by the DFG (German Research Foundation) under Emmy Noether Grant HU
1900/2-1; K. Eggensperger also acknowledges funding by the State Graduate Funding Program of Baden-
Württemberg. H. Hoos and K. Leyton-Brown acknowledge funding through NSERC Discovery Grants; K.
Leyton-Brown also acknowledges funding from an NSERC E.W.R. Steacie Fellowship.

Appendix A: Scenario descriptions

CPLEX-Regions is a MIP scenario based on the well-known IBM ILOG CPLEX solver,
applied to MIP-encoded instances of the combinatorial auction winner
determination problem (Leyton-Brown et al. 2000). The MIP instance
features used in this scenario include static (Leyton-Brown et al. 2009;
Kadioglu et al. 2010; Hutter et al. 2014b) and probing features (Xu
et al. 2011). Even though CPLEX has 74 parameters, its performance
can be predicted quite accurately (Hutter et al. 2014b).

CPLEX-RCW2 also uses CPLEX , in this case to solve MIP-encoded problems from
computational sustainability that model habitat preservation for endan-
gered red-cockaded woodpeckers (Ahmadizadeh et al. 2010; Xu et al.
2011). The configuration space and the instance features are the same
as in CPLEX-Regions; however, CPLEX exhibits a much larger range
of performance values across RCW2 instances.

Clasp-Rooks is a scenario from the 2014 Configurable SAT Solver Challenge
(CSSC’14; Hutter et al. 2017) and is based on the SAT (andASP) solver
Clasp (Gebser et al. 2012) applied to so-called “rooks” instances—a
variant of the n-queens problem with additional constraints (Manthey
and Steinke 2014). We use the instance features generated by the well-
known algorithm selector Satzilla (Nudelman et al. 2003; Xu et al.
2008; Hutter et al. 2014b) for this and all other SAT scenarios. This
AC scenario is distinguished byClasp’s highly structured configuration
space, which contains a large number of conditional parameters.

Lingeling-CF is also a scenario from CSSC’14; it is based on the state-of-the-art
SAT solver Lingeling (Biere 2013) applied to circuit-based fuzz testing
instances (Brummayer et al. 2012).With 322 parameters, Lingeling has

123

36 Mach Learn (2018) 107:15–41

the largest configuration space of any target algorithm considered in our
experiments (and also one of the largest of any SAT solver we are aware
of). This gives rise to a particularly challenging AC scenario, because
many parameters range from 0 to the maximal 32-bit integer and offer
more scope for reductions than improvements in performance.

ProbSAT-7SAT is another scenario from CSSC’14; it is based on one of the state-
of-the-art local search SAT solvers, ProbSAT (Balint and Schöning
2012) applied to 7SAT random instances. With only 9 parameters, the
configuration space is quite small.

MiniSATHack-K3 is our last scenario from the CSSC’14; it is based on a modification
of the well-known MiniSAT solver (Eén and Sörensson 2003), called
Minisat-HACK-999ED (Oh 2014) on 3SAT random instances. The 10
categorical parameters give raise to a configuration space of 800 000
parameter configurations, making it the smallest configuration space
we consider.

LPG-Satellite was introduced in the context of parameter importance analysis with
ablation (Fawcett and Hoos 2016). It is based on the AI planning sys-
tem lpg (Gerevini and Serina 2002), which exposes 67 parameters. In
this case we study satellite instances: planning problems arising in the
control and observation scheduling of orbital satellites (Long and Fox
2003). The instance features are a combination of native planning fea-
tures and features derived by translating planning instances into SAT
(Fawcett et al. 2014).

LPG-Zenotravel uses the same target algorithm, lpg, as LPG-Satellite, in combination
with instances from the zenotravel planning domain (Penberthy and
Weld 1994), which arise in a version of route planning. The default
configurationof lpg achievesworse performance thanonLPG-Satellite;
nevertheless, after configuration, the instances from this scenario turn
out to be easier for lpg.

Clasp-WS is based on the dual-purpose SAT/ASP solver Clasp applied to ASP
(rather than SAT) instances. Clasp has a richer configuration space in
the ASP domain (35 additional parameters, including 12 conditional
ones); to compensate, we set the configuration budget twice as high
as for Clasp-Rooks. The ASP problem instances encode optimizing
join order in database systems (Lierler and Schüller 2012). To generate
instance features, we used the same feature extractor, claspre, as the
state-of-the-art ASP algorithm selector claspfolio (Hoos et al. 2014).

svm-mnist is based on a support vector machine (Cortes and Vapnik 1995)
(using the libsvm implementation via scikit-learn) applied to the well-
knownMNIST data set. We optimized 6 hyperparameters of the SVM,
including the kernel (rbf, polynomial or sigmoid) and its dependent
hyperparameters.

xgboost-covertype is based on xgboost (Chen and Guestrin 2016) applied to the covertype
data set. We optimized 11 mostly continuous hyperparameters.

123

Mach Learn (2018) 107:15–41 37

References

Ahmadizadeh, K., Dilkina, B., Gomes, C., & Sabharwal, A. (2010). An empirical study of optimization for
maximizing diffusion in networks. In D. Cohen (Ed.) Proceedings of the international conference on
principles and practice of constraint programming (CP’10), Lecture Notes in Computer Science (Vol.
6308, pp. 514–521). Berlin: Springer.

Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J., O’Reilly, U., & Amarasinghe, S.
(2014). Opentuner: An extensible framework for program autotuning. In J. Amaral, & J. Torrellas (Eds.)
International conference on parallel architectures and compilation (pp. 303–316). New York: ACM.

Ansótegui, C., Sellmann, M., & Tierney, K. (2009). A gender-based genetic algorithm for the automatic
configuration of algorithms. In I. Gent (Ed.) Proceedings of the fifteenth international conference on
principles and practice of constraint programming (CP’09) Lecture Notes in Computer Science (Vol.
5732, pp. 142–157). Berlin: Springer.

Ansótegui, C.,Malitsky, Y., Sellmann,M.,&Tierney, K. (2015).Model-based genetic algorithms for algorithm
configuration. In Q. Yang,&M.Wooldridge (Eds.)Proceedings of the 25th international joint conference
on artificial intelligence (IJCAI’15) (pp. 733–739).

Arbelaez, A., Truchet, C., & O’Sullivan, B. (2016). Learning sequential and parallel runtime distributions for
randomized algorithms. InProceedings of the international conference on tools with artificial intelligence
(ICTAI).

Balint, A., & Schöning, U. (2012). Choosing probability distributions for stochastic local search and the role
of make versus break. In A. Cimatti, & R. Sebastiani (Eds.) Proceedings of the fifteenth international
conference on theory and applications of satisfiability testing (SAT’12), Lecture Notes in Computer
Science (Vol. 7317, pp. 16–29). Berlin:Springer.

Bardenet, R., Brendel,M., Kégl, B., & Sebag,M. (2014). Collaborative hyperparameter tuning. In S. Dasgupta,
&D.McAllester (Eds.)Proceedings of the 30th international conference onmachine learning (ICML’13)
(pp. 199–207). Madison: Omnipress.

Bensusan, H., & Kalousis, A. (2001). Estimating the predictive accuracy of a classifier. In Proceedings of the
12th European conference on machine learning (ECML) (pp. 25–36). Berlin: Springer.

Bergstra, J., Yamins, D., &Cox, D. (2014).Making a science of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. In S. Dasgupta, & D. McAllester (Eds.) Proceedings of
the 30th international conference on machine learning (ICML’13) (pp. 115–123). Madison: Omnipress.

Biere, A. (2013). Lingeling, plingeling and treengeling entering the sat competition 2013. In A. Balint, A.
Belov, M. Heule, & M. Järvisalo (Eds.) Proceedings of SAT competition 2013: Solver and benchmark
descriptions (Vol. B-2013-1, pp. 51–52). Helsinki: University of Helsinki, Department of Computer
Science Series of Publications B.

Biere, A. (2014). Yet another local search solver and Lingeling and friends entering the SAT competition 2014.
In A. Belov, D. Diepold, M. Heule, & M. Järvisalo (Eds.) Proceedings of SAT competition 2014: Solver
and benchmark descriptions (Vol. B-2014-2, pp. 39–40). Helsinki: University of Helsinki, Department
of Computer Science Series of Publications B.

Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring meta-
heuristics. In W. Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V.
Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke, & N. Jonoska
(Eds.) Proceedings of the genetic and evolutionary computation conference (GECCO’02) (pp. 11–18).
Burlington: Morgan Kaufmann Publishers.

Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Frechétte, A., et al. (2016). ASlib: A bench-
mark library for algorithm selection. Artificial Intelligence, 237, 41–58.

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural network.
In F. Bach, & D. Blei (Eds.) Proceedings of the 32nd international conference on machine learning
(ICML’15) (Vol. 37, pp. 1613–1622). Madison: Omnipress.

Brazdil, P., Giraud-Carrier, C., Soares, C., & Vilalta, R. (2008). Metalearning: Applications to data mining
(1st ed.). Berlin: Springer Publishing Company.

Breimann, L. (2001). Random forests. Machine Learning Journal, 45, 5–32.
Brochu, E., Cora, V., & de Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost functions,

with application to active user modeling and hierarchical reinforcement learning. Computing Research
Repository (CoRR) abs/1012.2599.

Brummayer, R., Lonsing, F., & Biere, A. (2012). Automated testing and debugging of SAT and QBF solvers.
In A. Cimatti, & R. Sebastiani (Eds.) Proceedings of the fifteenth international conference on theory
and applications of satisfiability testing (SAT’12), Lecture Notes in Computer Science (Vol. 7317, pp.
44–57). Berlin: Springer.

123

38 Mach Learn (2018) 107:15–41

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In B. Krishnapuram, M. Shah, A.
Smola, C. Aggarwal, D. Shen, & R. Rastogi (Eds.) Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining (KDD) (pp. 785–794). New York: ACM.

Collobert, R., Bengio, S., & Bengio, Y. (2002). A parallel mixture of svms for very large scale problems.
Neural Computation, 14(5), 1105–1114.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
Dixon, L., & Szegö, G. (1978). The global optimization problem: An introduction. Towards global optimiza-

tion, 2, 1–15.
Domhan, T., Springenberg, J. T., & Hutter, F. (2015). Speeding up automatic hyperparameter optimization

of deep neural networks by extrapolation of learning curves. In Q. Yang, & M. Wooldridge (Eds.)
Proceedings of the 25th international joint conference on artificial intelligence (IJCAI’15) (pp 3460–
3468).

Eén,N.,&Sörensson,N. (2003).An extensible sat-solver. InE.Giunchiglia,&A.Tacchella (Eds.)Proceedings
of the conference on theory and applications of satisfiability testing (SAT) Lecture Notes in Computer
Science (Vol. 2919, pp. 502–518). Berlin: Springer.

Eggensperger, K., Feurer,M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., &Leyton-Brown,K. (2013). Towards
an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS workshop on
Bayesian optimization in theory and practice (BayesOpt’13).

Eggensperger, K., Hutter, F., Hoos, H., &Leyton-Brown,K. (2015). Efficient benchmarking of hyperparameter
optimizers via surrogates. In B. Bonet, & S. Koenig (Eds.) Proceedings of the twenty-nineth national
conference on artificial intelligence (AAAI’15) (pp. 1114–1120). AAAI Press.

Fawcett, C., & Hoos, H. (2016). Analysing differences between algorithm configurations through ablation.
Journal of Heuristics, 22(4), 431–458.

Fawcett, C., Vallati, M., Hutter, F., Hoffmann, J., Hoos, H., & Leyton-Brown, K. (2014). Improved features
for runtime prediction of domain-independent planners. In S. Chien, D. Minh, A. Fern, & W. Ruml
(Eds.) Proceedings of the twenty-fourth international conference on automated planning and scheduling
(ICAPS-14), AAAI.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., & Blum, M., Hutter, F. (2015a). Efficient and
robust automated machine learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett
(Eds.) Proceedings of the 29th international conference on advances in neural information processing
systems (NIPS’15) (pp. 2962–2970).

Feurer, M., Springenberg, T., & Hutter, F. (2015b). Initializing Bayesian hyperparameter optimization via
meta-learning. In B. Bonet, & S. Koenig (Eds.) Proceedings of the twenty-nineth national conference on
artificial intelligence (AAAI’15) (pp. 1128–1135). AAAI Press.

Gama, J., & Brazdil, P. (1995). Characterization of classification algorithms. In Proceedings of the 7th Por-
tuguese conference on artificial intelligence (pp. 189–200). Berlin: Springer.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M., & Ziller, S. (2011). A portfolio solver
for answer set programming: Preliminary report. In J. Delgrande, & W. Faber (Eds.) Proceedings of
the eleventh international conference on logic programming and nonmonotonic reasoning (LPNMR’11),
Lecture Notes in Computer Science (Vol. 6645, pp. 352–357). Berlin: Springer.

Gebser, M., Kaufmann, B., & Schaub, T. (2012). Conflict-driven answer set solving: From theory to practice.
Artificial Intelligence, 187–188, 52–89.

Gelbart, M., Snoek, J., & Adams, R. (2014). Bayesian optimization with unknown constraints. In N. Zhang,
& J. Tian (Eds.) Proceedings of the 30th conference on uncertainty in artificial intelligence (UAI’14),
AUAI Press.

Gerevini, A., & Serina, I. (2002). LPG: A planner based on local search for planning graphs with action costs.
In M. Ghallab, J. Hertzberg, & P. Traverso (Eds.) Proceedings of the sixth international conference on
artificial intelligence (pp. 13–22). Cambridge: The MIT Press.

Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T., & Crombecq, K. (2010). A surrogate modeling and
adaptive sampling toolbox for computer based design. Journal of Machine Learning Research, 11, 2051–
2055.

Guerra, S., Prudêncio, R., & Ludermir, T. (2008). Predicting the performance of learning algorithms using
support vector machines as meta-regressors. In V. Kurkova-Pohlova, & J. Koutnik (Eds) International
conference on artificial neural networks (ICANN’08) (vol. 18, pp. 523–532). Berlin: Springer.

Hoos, H. (2017). Empirical algorithmics. Cambridge: Cambridge University Press. to appear.
Hoos, H., & Stützle, T. (2004). Stochastic local search: Foundations and applications. Burlington: Morgan

Kaufmann Publishers Inc.
Hoos, H., Lindauer, M., & Schaub, T. (2014). claspfolio 2: Advances in algorithm selection for answer set

programming. Theory and Practice of Logic Programming, 14, 569–585.

123

Mach Learn (2018) 107:15–41 39

Hutter, F., Babić, D., Hoos, H., & Hu, A. (2007). Boosting verification by automatic tuning of decision
procedures. In L. O’Conner (Ed.) Formal methods in computer aided design (FMCAD’07) (pp. 27–34).
Washington, DC: IEEE Computer Society Press.

Hutter, F., Hoos, H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An automatic algorithm configuration
framework. Journal of Artificial Intelligence Research, 36, 267–306.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2010). Automated configuration of mixed integer programming
solvers. In A. Lodi, M. Milano, & P. Toth (Eds.) Proceedings of the seventh international conference on
integration of AI andOR techniques in constraint programming (CPAIOR’10)LectureNotes in Computer
Science (Vol. 6140, pp. 186–202). Berlin: Springer.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2011a). Bayesian optimization with censored response data. In
NIPS workshop on Bayesian optimization, sequential experimental design, and bandits (BayesOpt’11).

Hutter, F., Hoos, H., & Leyton-Brown, K, (2011b). Sequential model-based optimization for general algorithm
configuration. In C. Coello (Ed.) Proceedings of the fifth international conference on learning and
intelligent optimization (LION’11) Lecture Notes in Computer Science (Vol. 6683, pp. 507–523). Belin:
Springer.

Hutter, F., López-Ibánez, M., Fawcett, C., Lindauer, M., Hoos, H., Leyton-Brown, K., & Stützle, T. (2014a).
Aclib: A benchmark library for algorithm configuration. In P. Pardalos, &M. Resende (Eds.)Proceedings
of the eighth international conference on learning and intelligent optimization (LION’14) Lecture Notes
in Computer Science. Berlin: Springer.

Hutter, F., Xu, L., Hoos, H., & Leyton-Brown, K. (2014b). Algorithm runtime prediction: Methods and
evaluation. Artificial Intelligence, 206, 79–111.

Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., & Leyton-Brown, K. (2017). The configurable SAT
solver challenge (CSSC). Artificial Intelligence, 243, 1–25.

Kadioglu, S., Malitsky, Y., Sellmann, M., & Tierney, K. (2010). ISAC–instance-specific algorithm configura-
tion. InH. Coelho, R. Studer, &M.Wooldridge (Eds.)Proceedings of the nineteenth european conference
on artificial intelligence (ECAI’10) (pp. 751–756). Amsterdam: IOS Press.

Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.
Kotthoff, L. (2014). Algorithm selection for combinatorial search problems: A survey.AIMagazine, 35, 48–60.
Köpf, C., Taylor, C., & Keller, J. (2000). Meta-analysis: From data characterisation for meta-learning to meta-

regression. In Proceedings of the PKDD-00 workshop on data mining, decision support, meta-learning
and ILP.

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural
networks. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, & K. Weinberger (Eds.) Proceedings of the
26th international conference on advances in neural information processing systems (NIPS’12) (pp
1097–1105).

Lang, M., Kotthaus, H., Marwedel, P., Weihs, C., Rahnenführer, J., & Bischl, B. (2015). Automatic model
selection for high-dimensional survival analysis. Journal of Statistical Computation and Simulation, 85,
62–76.

Leite, R., & Brazdil, P. (2010). Active testing strategy to predict the best classification algorithm via sampling
and metalearning. In H. Coelho, R. Studer, & M. Wooldridge (Eds.) Proceedings of the nineteenth
European conference on artificial intelligence (ECAI’10) (pp. 309–314). Amsterdam: IOS Press.

Leite, R., Brazdil, P., & Vanschoren, J. (2012). Selecting classification algorithms with active testing. In
P. Perner (Ed.), Machine learning and data mining in pattern recognition Lecture Notes in Computer
Science (pp. 117–131). Berlin: Springer.

Leyton-Brown, K., Pearson, M., & Shoham, Y. (2000). Towards a universal test suite for combinatorial auction
algorithms. In Proceedings of the international conference on economics and computation (pp. 66–76).

Leyton-Brown, K., Nudelman, E., & Shoham, Y. (2009). Empirical hardness models: Methodology and a case
study on combinatorial auctions. Journal of the ACM, 56(4), 22.

Lierler, Y., & Schüller, P. (2012). Parsing combinatory categorial grammar via planning in answer set pro-
gramming. In Lecture Notes in Computer Science (Vol. 7265, pp. 436–453). Berlin: Springer.

Lindauer, M., Hoos, H., Hutter, F., & Schaub, T. (2015). Autofolio: An automatically configured algorithm
selector. Journal of Artificial Intelligence Research, 53, 745–778.

Long, D., & Fox, M. (2003). The 3rd international planning competition: Results and analysis. Journal of
Artificial Intelligence Research (JAIR), 20, 1–59.

López-Ibáñez, M., Dubois-Lacoste, J., Caceres, L. P., Birattari, M., & Stützle, T. (2016). The irace package:
Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43–58.

Loreggia, A., Malitsky, Y., Samulowitz, H., & Saraswat, V. (2016). Deep learning for algorithm portfolios.
In D. Schuurmans,& M. Wellman (Eds.) Proceedings of the thirtieth national conference on artificial
intelligence (AAAI’16) (pp. 1280–1286). AAAI Press.

123

40 Mach Learn (2018) 107:15–41

Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2013). Algorithm portfolios based on cost-
sensitive hierarchical clustering. In F. Rossi (Ed.) Proceedings of the 23rd international joint conference
on artificial intelligence (IJCAI’13) (pp. 608–614).

Manthey, N., & Lindauer, M. (2016). Spybug: Automated bug detection in the configuration space of SAT
solvers. In Proceedings of the international conference on theory and applications of satisfiability testing
(SAT) (pp. 554–561).

Manthey, N., & Steinke, P. (2014). Too many rooks. In A. Belov, D. Diepold, M. Heule, & M. Järvisalo (Eds.)
Proceedings of SAT competition 2014: Solver and benchmark descriptions (Vol. B-2014-2, pp. 97–98).
University of Helsinki, Department of Computer Science Series of Publications B.

Maratea, M., Pulina, L., & Ricca, F. (2014). A multi-engine approach to answer-set programming. Theory and
Practice of Logic Programming, 14, 841–868.

Maron, O., & Moore, A. (1994). Hoeffding races: Accelerating model selection search for classification
and function approximation. In Proceedings of the 6th international conference on advances in neural
information processing systems (NIPS’94) (pp. 59–66). Burlington: Morgan Kaufmann Publishers.

Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7, 983–999.
Neal, R. (1995). Bayesian learning for neural networks. PhD thesis, University of Toronto, Toronto, Canada.
Nudelman, E., Leyton-Brown, K., Andrew, G., Gomes, C., McFadden, J., Selman, B., & Shoham, Y. (2003).

Satzilla 0.9, solver description. International SAT Competition.
Nudelman, E., Leyton-Brown, K., Devkar, A., Shoham, Y., & Hoos, H. (2004). Understanding random SAT:

Beyond the clauses-to-variables ratio. In International conference on principles and practice of constraint
programming (CP’04) (pp. 438–452).

Oh, C. (2014). Minisat hack 999ed, minisat hack 1430ed and swdia5by. In A. Belov, D. Diepold, M. Heule,
& M. Järvisalo (Eds.) Proceedings of SAT competition 2014: solver and benchmark descriptions (Vol.
B-2014-2, p. 46). University of Helsinki, Department of Computer Science Series of Publications B.

Penberthy, J., & Weld, D. (1994). Temporal planning with continuous change. In B. Hayes-Roth, & R. Korf
(Eds.)Proceedings of the 12th national conference on artificial intelligence (pp. 1010–1015). Cambridge:
The MIT Press.

Rasmussen, C., &Williams, C. (2006).Gaussian processes for machine learning. Cambridge: TheMIT Press.
Reif, M., Shafait, F., Goldstein, M., Breuel, T., & Dengel, A. (2014). Automatic classifier selection for non-

experts. Pattern Analysis and Applications, 17(1), 83–96.
Rice, J. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.
Sacks, J., Welch, W., Welch, T., &Wynn, H. (1989). Design and analysis of computer experiments. Statistical

Science, 4(4), 409–423.
Santner, T., Williams, B., & Notz, W. (2003). The design and analysis of computer experiments. Berlin:

Springer.
Sarkar, A., Guo, J., Siegmund, N., Apel, S., & Czarnecki, K. (2015). Cost-efficient sampling for performance

prediction of configurable systems. In M. Cohen, L. Grunske, & M. Whalen (Eds.) 30th IEEE/ACM
International Conference on Automated Software Engineering (pp. 342–352). IEEE.

Schilling, N., Wistuba, M., Drumond, L., & Schmidt-Thieme, L. (2015). Hyperparameter optimization with
factorized multilayer perceptrons. In Machine learning and knowledge discovery in databases (pp. 87–
103). Berlin: Springer.

Schmee, J., & Hahn, G. (1979). A simple method for regression analysis with censored data. Technometrics,
21, 417–432.

Shahriari, B., Swersky, K., Wang, Z., Adams, R., & de Freitas, N. (2016). Taking the human out of the loop:
A review of Bayesian optimization. Proceedings of the IEEE, 104(1), 148–175.

Silverthorn, B., Lierler, Y., & Schneider, M. (2012). Surviving solver sensitivity: An ASP practitioner’s guide.
In A. Dovier, & V. Santos Costa (Eds.) Technical communications of the twenty-eighth international
conference on logic programming (ICLP’12), Leibniz international proceedings in informatics (LIPIcs)
(Vol. 17, pp. 164–175).

Snoek, J., Larochelle, H., & Adams, RP. (2012). Practical Bayesian optimization of machine learning algo-
rithms. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, & K. Weinberger (Eds.) Proceedings of the 26th
international conference on advances in neural information processing systems (NIPS’12) (pp. 2960–
2968).

Snoek J, Rippel O, Swersky K, Kiros R, Satish N, Sundaram N, Patwary M, Prabhat, Adams R (2015).
Scalable Bayesian optimization using deep neural networks. In F. Bach, & D. Blei (Eds.) Proceedings of
the 32nd international conference on machine learning (ICML’15) (Vol. 37, pp. 2171–2180). Madison:
Omnipress.

Soares, C., &Brazdil, P. (2004). Ameta-learningmethod to select the kernel width in support vector regression.
Machine Learning Journal, 54, 195–209.

123

Mach Learn (2018) 107:15–41 41

Spearman, C. (1904). The proof and measurement of association between two things. American Journal of
Psychology, 15, 71–101.

Springenberg, J., Klein, A., Falkner, S., &Hutter, F. (2016). Bayesian optimizationwith robust Bayesian neural
networks. In Proceedings of the international conference on advances in neural information processing
systems (NIPS’16).

Takeuchi, I., Le, Q., Sears, T., & Smola, A. (2006). Nonparametric quantile estimation. Journal of Machine
Learning Research, 7, 1231–1264.

Thornton, C., Hutter, F., Hoos, H., & Leyton-Brown, K. (2013). Auto-WEKA: Combined selection and hyper-
parameter optimization of classification algorithms. In I. Dhillon, Y. Koren, R. Ghani, T. Senator, P.
Bradley, R. Parekh, J. He, R. Grossman, & R. Uthurusamy (Eds.) The 19th ACM SIGKDD international
conference on knowledge discovery and data mining (KDD’13) (pp 847–855). New York: ACM Press

Vallati, M., Fawcett, C., Gerevini, A., Hoos, H., & Saetti, A. (2013). Automatic generation of efficient domain-
optimized planners from generic parametrized planners. In M. Helmert, & G. Röger (Eds.) Proceedings
of the sixth annual symposium on combinatorial search (SOCS’14), AAAI Press.

Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (2015). Learning hyperparameter optimization initializa-
tions. In Proceedings of the international conference on data science and advanced analytics (DSAA)
(pp. 1–10). IEEE

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based algorithm selection for
SAT. Journal of Artificial Intelligence Research, 32, 565–606.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2011). Hydra-MIP: Automated algorithm configuration and
selection for mixed integer programming. In RCRA workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial
Intelligence (IJCAI).

123

	Efficient benchmarking of algorithm configurators via model-based surrogates
	Abstract
	1 Introduction
	1.1 Obstacles for research on algorithm configuration
	1.2 Contributions
	1.3 Existing work on surrogates
	1.4 Structure of the article

	2 Background on algorithm configuration
	2.1 AC as a generalization of HPO
	2.2 Algorithm configurators

	3 Surrogates of general AC benchmarks
	3.1 General setup
	3.2 What kind of data to collect regarding instances?
	3.3 Choice of regression models for typical AC parameter spaces
	3.4 Handling widely-varying running times
	3.5 Imputation of right-censored data
	3.6 Handling randomized algorithms

	4 Experiments for algorithm configuration
	4.1 Algorithm configuration benchmarks from AClib
	4.2 Evaluation of raw model performance
	4.3 Qualitative evaluation of surrogate scenarios
	4.4 Quantitative evaluation of surrogate scenarios

	5 Conclusion
	Acknowledgements
	Appendix A: Scenario descriptions
	References

