
Algorithms for Verifying Deep Neural Networks
Changliu Liu cliu6@andrew.cmu.edu
Carnegie Mellon University, Pittsburgh, PA 15213

Tomer Arnon tarnon@stanford.edu
Christopher Lazarus clazarus@stanford.edu
Clark Barrett barrett@cs.stanford.edu
Mykel J. Kochenderfer mykel@stanford.edu
Stanford University, Stanford, CA 94305

Deep neural networks are widely used for nonlinear function approximation with applications
ranging from computer vision to control. Although these networks involve the composition of
simple arithmetic operations, it can be very challenging to verify whether a particular network
satisfies certain input-output properties. This article surveys methods that have emerged recently
for soundly verifying such properties. These methods borrow insights from reachability analysis,
optimization, and search. We discuss fundamental differences and connections between existing
algorithms. In addition, we provide pedagogical implementations of existing methods and compare
them on a set of benchmark problems.

1 Introduction

Neural networks [15] have been widely used in many applications, such as image classification
and understanding [17], language processing [24], and control of autonomous systems [26].
These networks represent functions that map inputs to outputs through a sequence of layers.
At each layer, the input to that layer undergoes an affine transformation followed by a simple
nonlinear transformation before being passed to the next layer. These nonlinear transformations
are often called activation functions, and a common example is the rectified linear unit (ReLU),
which transforms the input by setting any negative values to zero. Although the computation
involved in a neural network is quite simple, these networks can represent complex nonlinear
functions by appropriately choosing the matrices that define the affine transformations. The
matrices are often learned from data using a form of stochastic gradient descent.

Neural networks are being used for increasingly important tasks, and in some cases, incorrect
outputs can lead to costly consequences. Traditionally, validation of neural networks has largely
focused on evaluating the network on a large collection of points in the input space and
determining whether the outputs are as desired. However, since the input space is effectively
infinite in cardinality, it is not feasible to check all possible inputs. Even networks that perform
well on a large sample of inputs may not correctly generalize to new situations and may be
vulnerable to adversarial attacks [29].

This article surveys a class of methods that are capable of formally verifying properties of
deep neural networks over the full input space. A property can be formulated as a statement
that if the input belongs to some set X , then the output will belong to some set Y . To illustrate,
in classification problems, it can be useful to verify that points near a training example belong
to the same class as that example. In the control of physical problems, it can be useful to verify
that the outputs from a network satisfy hard safety constraints.

The verification algorithms that we survey are sound, meaning that they will only report
that a property holds if the property actually holds. Some of the algorithms that we discuss
are also complete, meaning that whenever the property holds, the algorithm will correctly

algorithms for verifying deep neural networks 2

state that it holds. However, some of the algorithms compromise completeness in their use of
approximations to improve computational efficiency.

The algorithms may be classified based on whether they draw insights from these three
categories of analysis:

1. Reachability. These methods use layer-by-layer reachability analysis of the network. Repre-
sentative methods are ExactReach [46], MaxSens [44], and Ai2 [14]. Some other approaches
also use reachability methods (such as interval arithmetic) to compute the bounds on the
values of the nodes.

2. Optimization. These methods use optimization to falsify the assertion. The function rep-
resented by the neural network is a constraint to be considered in the optimization. As a
result, the optimization problem is not convex. In primal optimization, different methods
are developed to encode the nonlinear activation functions as linear constraints. Examples
include NSVerify [23], MIPVerify [38], and ILP [4]. The constraints can also be simplified
through dual optimization. Representative methods for dual optimization are Duality [12],
ConvDual [43], and Certify [31].

3. Search. These methods search for a case to falsify the assertion. Search is usually combined
with either reachability or optimization, as the latter two methods provide possible search
directions. Representative methods for search and reachability are ReluVal [40], DLV [18], Fast-
Lin [41], and Fast-Lip [41]. Representative methods for search and optimization are Reluplex
[20], Planet [13], BaB [7], and Sherlock [10]. Some of these methods call Boolean satisfiability
(SAT) or satisfiability modulo theories (SMT) solvers [3] to verify networks with only ReLU
activations.

Scope of this article. This article introduces a unified mathematical framework for verifying
neural networks, classifies existing methods under this framework, provides pedagogical
implementations of existing methods,1 and compares those methods on a set of benchmark 1 Our implementation is provided

in the Julia programming language.
We have found the language to be
ideal for specifying in human read-
able form [5]. The full implementa-
tion may be found at https://git
hub.com/sisl/NeuralVerificatio

n.jl.

problems.2

2 There have been other reviews
of methods for verifying neural
networks. Leofante et al. review
primal optimization methods that
encode ReLU networks as mixed
integer programming problems
together with search and opti-
mization under the framework of
Boolean satisfiability and SMT [22].
Xiang et al. review a broader range
of verification techniques in addi-
tion to safe control and learning
[48]. Salman et al. review and com-
pare methods that use convex re-
laxations to compute robustness
bounds of ReLU networks [32].

The following topics are not included in the discussion:

• neural network testing methods that generate better test cases [16], [30], [36], [37];

• white box approaches that build meaningful mappings from network parameters to some
functional description [28];

• verification of binarized neural networks [8], [9], [27];

• closed-loop safety, stability and robustness by executing control policies defined by neural
networks[11], [45], or verification of recurrent neural networks [2];

• training or retraining methods to make a network satisfy a property [25], [31], [43];

• robustness of the verification algorithm under floating point arithmetic [33].

Section 2 discusses the mathematical problem for verification. Section 3 gives an overview
of the categories of methods that we will consider. Section 4 introduces preliminary and
background mathematics. Section 5 discusses reachability methods. Section 6 discusses methods
for primal optimization. Section 7 discusses methods for dual optimization. Section 8 discusses
methods for search and reachability. Section 9 discusses methods for search and optimization.
Section 10 compares those methods. Section 11 concludes the article.

https://github.com/sisl/NeuralVerification.jl
https://github.com/sisl/NeuralVerification.jl
https://github.com/sisl/NeuralVerification.jl

algorithms for verifying deep neural networks 3

2 Problem Formulation

We first review feedforward neural networks and introduce the mathematical formulation of
the verification problem. We will then discuss the results provided by various algorithms along
with the properties of soundness and completeness. In our discussion, we will use lowercase
letters in italics for scalars and scalar functions (x), lowercase letters in upright bold for vectors
and vector functions (x), uppercase letters in upright bold for matrices and matrix functions
(X), and calligraphic uppercase letters for sets and set functions (X).

2.1 Feedforward Neural Network

Consider an n-layer feedforward neural network that represents a function f with input x ∈ Dx ⊆
Rk0 and output y ∈ Dy ⊆ Rkn , i.e., y = f(x), where k0 is the input dimension and kn is the
output dimension. All non-vector inputs or outputs are reshaped to vectors. Each layer in f
corresponds to a function fi : Rki−1 → Rki , where ki is the dimension of the hidden variable zi

in layer i. Moreover, we set z0 = x and zn = y. Hence, the network can be represented by

f = fn ◦ fn−1 ◦ · · · ◦ f1, (1)

where ◦ means function composition. The function at layer i is

zi = fi(zi−1) = σi(Wizi−1 + bi), (2)

which consists of a linear transformation defined by a weight matrix Wi ∈ Rki×ki−1 and a bias
vector bi ∈ Rki , and an activation function σi : Rki → Rki . All activation functions are assumed
to be monotone and non-decreasing. For simplicity, let ẑi

..= Wizi−1 + bi denote the node value
before activation. Let zi,j be the value of the jth node in the ith layer, wi,j ∈ R1×ki−1 be the jth
row in Wi, wi,j,k be the kth entry in wi,j, bi,j be the jth entry in bi. In the case that the activation
function is node-wise, we denote the activation for the jth node as σi,j. Then

zi,j = σi,j
(
wi,jzi−1 + bi,j

)
= σi,j

(
∑
k

wi,j,k zi−1,k + bi,j

)
= σi,j(ẑi,j). (3)

Figure 1 shows the structure of a feedforward neural network.
A network is defined in algorithm 2.1. The definitions of different activation functions are

listed in algorithm 2.2.

2.2 Verification Problem

Verification involves checking whether input-output relationships of a function hold. The input
constraint is imposed by a set X ⊆ Dx. The corresponding output constraint is imposed by
a set Y ⊆ Dy. In the following discussion, we call the sets X and Y constraints. Solving the
verification problem requires showing that the following assertion holds:

x ∈ X ⇒ y = f(x) ∈ Y . (4)

algorithms for verifying deep neural networks 4

Figure 1. Illustration of a feedfor-
ward neural network and the nota-
tions used in this article.

abstract type ActivationFunction end

struct Layer{F<:ActivationFunction, N<:Number}

weights::Matrix{N}

bias::Vector{N}

activation::F

end

struct Network

layers::Vector{Layer}

end

Algorithm 2.1. Network structure.
A network is a list of layers. Each
layer consists of weights W, bias b,
and activation σ.

struct GeneralAct <: ActivationFunction end

struct ReLU <: ActivationFunction end

struct Id <: ActivationFunction end

(f::GeneralAct)(x) = f(x)

(f::ReLU)(x) = max.(x,0)

(f::Id)(x) = x

Algorithm 2.2. Activation func-
tions. This paper mostly focuses
on networks with ReLU activa-
tions. Other piece-wise linear ac-
tivations can be encoded by multi-
ple ReLU activations. For example,
the Max activation function can be
encoded using the following rela-
tionship: Max(x, y) = ReLU(x −
y) + y. Composing multiple Max
functions can enable the encoding
of the Max pooling operator.

algorithms for verifying deep neural networks 5

For example, to verify robustness in a classification network,3 we need to ensure that all 3 Given an input, a classification
network outputs weights over sev-
eral labels. The input is assigned
the label with the highest weight.

samples in the neighborhood of a given input x0 are classified with the same label. Suppose the
desired label is i∗ ∈ {1, . . . , kn}. We need to ensure that yi∗ > yj for all j 6= i∗. The input and
output constraints are

X = {x : ‖x − x0‖p ≤ ε}, (5a)
Y = {y : yi∗ > yj, ∀j 6= i∗}, (5b)

where ε is the maximum allowable disturbance in the input space. The metric to measure
disturbance can be any `p norm, though the `∞ or the `1 norms are common because they lead
to linear constraints.

Our formulation is broader than classification problems. In general, the input set X and
the output set Y can have any geometry. For simplicity, we assume that X is a polytope, and
Y is either a polytope or the complement of a polytope. A polytope is a generalization of the
three-dimensional polyhedron and is defined as the intersection of a set of half-spaces.4 Since 4 This is the definition of a convex

polytope; alternative definitions ex-
ist, but this is the one we will use
here.

any compact domain can be approximated by a finite set of polytopes for any required accuracy,
this formulation can be easily extended to arbitrary geometries. Moreover, the complement of a
polytope allows the encoding of unbounded sets. By default, a polytope is a closed set, while
its complement is an open set.

Our discussion will focus on the following four subclasses of polytopes:5 5 In our implementations, we
use the definitions in LazySets.jl,
which is a Julia package for
calculus with convex sets [6]. The
implementation can be found at
https://github.com/JuliaReach

/LazySets.jl.

• Halfspace-polytope (or H-polytope), which represents polytopes using a set of linear inequality
constraints

Cx ≤ d, (6)

where C ∈ Rk×k0 , d ∈ Rk, and k is the number of inequality constraints that are defining the
polytope. A point x is in the polytope if and only if Cx ≤ d is satisfied.

• Vertex-polytope (or V-polytope), which represents polytopes using a set of vertices. Mathemati-
cally, it is described by a concatenation of all vertices vi for i ∈ {1, . . . , k},

[v1 v2 · · · vk], (7)

where k is the number of vertices. A point x is in the polytope if and only if x is in the convex
hull of the vertices.

• Hyperrectangle, which corresponds to a high-dimensional rectangle, defined by

|x − c| ≤ r, (8)

where c ∈ Rk0 is the center of the hyperrectangle and r ∈ Rk0 is the radius of the hyperrect-
angle.

• Halfspace, which is represented by a single linear inequality constraint

cTx ≤ d, (9)

where c ∈ Rk0 and d ∈ R.

In our discussion, we may refer to hyperrectangles as intervals. A hyperrectangle that has
uniform side lengths is called a hypercube. The set in (5b) corresponds to a halfspace-polytope.
When p = ∞, the set in (5a) corresponds to a hyperrectangle centered at x0 with uniform
radius ε.

The verification problem is defined in algorithm 2.3.

https://github.com/JuliaReach/LazySets.jl.
https://github.com/JuliaReach/LazySets.jl.

algorithms for verifying deep neural networks 6

struct Problem{P, Q}

network::Network

input::P

output::Q

end

Algorithm 2.3. Problem definition.
It consists of a network to be ver-
ified, an input set constraint, and
an output set constraint. The types
P and Q can be any sets that match
the requirements of the algorithm.

2.3 Results

Verification algorithms attempt to identify whether (4) holds. In some cases, algorithms may
return unknown if no conclusion can be drawn. Different algorithms output different types of
results as listed below and illustrated in figure 2.

• Counter example result, which is a counter example x∗ ∈ X with

f(x∗) /∈ Y . (10)

The property (4) is violated if such a counter example is found.

• Adversarial result, which is the maximum allowable disturbance with respect to an `p norm
while maintaining f(x) ∈ Y :

ε(x0, f,Y , p) ..= min
x, s.t. f(x)/∈Y

‖x − x0‖p. (11)

The property (4) is violated if the input set X exceeds the maximum allowable disturbance,

ε(x0, f,Y , p) < max
x∈X

‖x − x0‖p. (12)

• Reachability result, which is the output reachable set:

R(X , f) ..= {y : y = f(x), ∀x ∈ X}. (13)

The property (4) is violated if the reachable set does not belong to the output set Y ,

R(X , f) 6⊆ Y . (14)

Algorithm 2.4 provides definitions of these result types used in our implementation. The
status may be :holds, :violated, or :Unknown.

2.4 Soundness and Completeness

The result returned by a particular solver may not always be correct. A specific instance of
(4) can either hold or be violated. The status from a solver can be holds, violated, or unknown.
Ideally, a solver only outputs holds or violated to match the actual status of a given problem.
However, some algorithms make approximations that can result in a mismatch. For example,
the computed reachable set (denoted R̃) may be an over-approximation of R in (13). Then, even
if R̃ 6⊆ Y , i.e., the solver returns violated, it is possible that R ⊂ Y , i.e., the property actually
holds.

We use the following definitions to categorize solvers:

• Soundness, which requires that when the solver returns holds, the property actually holds.

algorithms for verifying deep neural networks 7

(a) Counter example. (b) Adversarial result. (c) Reachability result.

Figure 2. Illustration of different
results. The upper square repre-
sents the input domain. The lower
square represents the output do-
main. The input set X and the out-
put set Y are shown as gray poly-
gons. In (a), a counter example
is found. In (b), the input set ex-
ceeds the maximum allowable dis-
turbance (white circle in the input
domain). In (c), the output reach-
able set (blue set in the output do-
main) does not belong to the out-
put set.

abstract type Result end

struct BasicResult <: Result

status::Symbol

end

struct CounterExampleResult <: Result

status::Symbol

counter_example::Vector{Float64}

end

struct AdversarialResult <: Result

status::Symbol

max_disturbance::Float64

end

struct ReachabilityResult <: Result

status::Symbol

reachable::Vector{<:AbstractPolytope}

end

Algorithm 2.4. Result types.
BasicResult is for satisfiability
only. CounterExampleResult also
outputs a counter example if
the problem is not satisfied.
AdversarialResult outputs the
maximum allowable disturbance.
ReachabilityResult outputs the
reachable set.

algorithms for verifying deep neural networks 8

• Completeness, which requires that (i) the solver never returns unknown; and (ii) if the solver
returns violated, the property is actually violated.

• Termination, which requires that the solver always finishes after a finite number of steps.

A method that is sound, complete, and terminating always outputs the correct result with no
unknowns. All methods discussed in this survey are sound and terminating, but not all of them
are complete. Some methods use over-approximations to speed up computation and result in
incompleteness. Our implementation may be slightly different from the original implementation
of some methods. For example, the original implementation of DLV is always complete and is
sound under the minimality assumption of the search tree. Our implementation is sound but
not complete. The differences will not affect the key concepts of the methods. And we point out
the differences in the detailed discussion of the methods.

Table 1 summarizes the characteristics of all methods considered in this survey. The input
and output sets may include hyperrectangles (HR), halfspaces (HS), halfspace-polytopes (HP),
vertex-polytopes (VP), and polytope complements (PC). Additionally, the superscripts in the
table indicate the following constraints on the output sets:

1. The polytope has to be bounded, this restriction is not due to a theoretical limitation, but
rather to our implementation and will eventually be relaxed.

2. Polytope complements encode unbounded sets. They are used in optimization-based meth-
ods, to be explained in section 6. These methods usually encode the complement of the
output set as a constraint and require the constraint to be convex. The complement of a
polytope complement is a convex polytope, hence satisfies the requirement.

3. The output set must be 1-dimensional.

Method Name Activation Approach Input/Output Completeness

ExactReach [46] ReLU Exact Reachability HP/HP(bounded)1 X
AI2 [14] Piecewise Linear Split and Join HP/HP(bounded)1 ×
MaxSens [44] Any Interval Arithmatic HP/HP(bounded)1 ×

NSVerify [23] ReLU Naive MILP HR/PC2 X
MIPVerify [38] ReLU and Max MILP with bounds HR/PC2 X
ILP [4] ReLU Iterative LP HR/PC2 ×

Duality [12] Any Lagrangian Relaxation HR(uniform)/HS ×
ConvDual [43] ReLU Convex Relaxation HR(uniform)/HS ×
Certify [31] Differentiable Semidefinite Relaxation HR/HS ×

Fast-Lin [41] ReLU Network Relaxation HR/HS ×
Fast-Lip [41] ReLU Lipschitz Estimation HR/HS ×
ReluVal [40] ReLU Symbolic Interval HR/HR X
DLV [18] Any Search in Hidden Layers HR/HR(1-D)3 X*

Sherlock [10] ReLU Local and Global Search HR/HR(1-D)3 ×
BaB [7] Piecewise Linear Branch and Bound HR/HR(1-D)3 ×
Planet [13] Piecewise Linear Satisfiability (SAT) HR/PC2 X
Reluplex [20] ReLU Simplex HR/PC2 X

Table 1. List of existing methods.
We name the method if it does not
have a name. The entries under
‘‘activation’’ show the type of ac-
tivations supported in the meth-
ods. The entries under ‘‘approach’’
summarize the key ideas of the
methods. All the methods pre-
sented in this paper are sound and
the methods that are complete as
defined in section 2.4 are marked
in the ‘‘completeness’’ column. For
DLV, the original implementation
is complete but may not be sound,
while our implementation is sound
but not complete.

algorithms for verifying deep neural networks 9

3 Overview of Methods

This section overviews existing methods that are studied in this survey. Their common com-
ponents will be outlined. As mentioned earlier, there are three basic verification methods,
i.e., reachability, optimization, and search. Regarding the three basic methods, we categorize
those methods into the following five categories as shown in figure 3. The methods are also
summarized in table 1.

MaxSens

ExactReach

Ai2

NSVerify

MIPVerify

ILP

Duality

ConvDual

Certify

FastLin

FastLip

ReluVal

DLV

Sherlock

Reluplex

BaB

Planet

Reachability

Primal Dual

Optimization

Search

MaxSens

ExactReach

Ai2

NSVerify

MIPVerify

ILP

Duality

ConvDual

Certify

FastLin

FastLip

ReluVal

DLV

Sherlock

Reluplex

BaB

Planet

Reachability

Primal Dual

Optimization

Search

Figure 3. Overview of all meth-
ods in the survey. Given the
three basic methods: reachabil-
ity, optimization, and search, ex-
isting methods are divided into
five categories: reachability, pri-
mal optimization, dual optimiza-
tion, search and reachability, and
search and optimization. Relation-
ships among different methods are
shown in the figure.

3.1 Reachability

These methods perform layer-by-layer reachability analysis to compute the reachable set
R(X , f). They usually generate ReachabilityResult.

ExactReach [46] computes the exact reachable set for networks with only ReLU activations.
The key insight is that if the input set to a ReLU function is a union of polytopes, then the output
reachable set is also a union of polytopes. As there is no over-approximation, this method is
sound and complete. However, because the number of polytopes grows exponentially with
each layer, this method does not scale.

Ai2 [14] uses representations that over-approximate the reachable set. It trades precision of
the reachable set for scalability of the algorithm. It works for any piecewise linear activation
functions, such as ReLU and max pooling. Due to its approximation, the number of geometric
objects to be traced during layer-by-layer analysis is greatly reduced. Though Ai2 is not complete,
it scales well.

MaxSens [44] partitions the input domain into small grid cells, and loosely approximates
the reachable set for each grid cell considering the maximum sensitivity of the network at each
grid cell. Sensitivity of a function is equivalent to the Lipschitz constant of the function. The
union of those reachable sets is the output reachable set. The finer the partition, the tighter the
output reachable set. MaxSens is not complete. It works for any activation function and scales
well.

algorithms for verifying deep neural networks 10

3.2 Primal Optimization

Primal optimization methods try to falsify assertion (4). The network structure is a constraint
to be considered in the optimization. Existing methods only work for ReLU activations. Dif-
ferent methods are developed to encode the network as a set of linear constraints or mixed
integer linear constraints by exploiting the piecewise linearity in the ReLU. The encoding meth-
ods will be discussed in section 6.1. The return type can be either CounterExampleResult or
AdversarialResult, depending on the objective of the optimization.

NSVerify [1], [23] encodes the network as a set of mixed integer linear constraints. It solves
a feasibility problem without an objective function. It tries to find a counter example for the
verification problem.6 This method is sound and complete. 6 NSVerify [1] is developed for ver-

ification of a closed-loop system
that has neural network compo-
nents. It has been extended to ver-
ify recurrent neural networks [2].
We only review the method used
to verify non-recurrent neural net-
works, which was first discussed
in [23].

MIPVerify [38] also encodes the network as a set of mixed integer linear constraints. There
are two differences between MIPVerify and NSVerify. First, MIPVerify determines the bounds
on the nodes to tighten the constraints. Second, MIPVerify solves an adversarial problem that
tries to estimate the maximum allowable disturbance on the input side. This method is also
complete.

ILP (iterative linear programming) [4] encodes the network as a set of linear constraints by
linearizing the network at a reference point. The optimization problem in ILP is an adversarial
problem that tries to estimate the maximum allowable disturbance on the input side. It iteratively
solves the optimization. This method is not complete as it only considers one linear segment of
the network.

3.3 Dual Optimization

In primal optimization methods, different methods are developed to encode the constraints
imposed by the network. We can also use dual optimization to simplify the constraints. In
dual optimization, the constraints are much simpler than those in primal optimization. On
the other hand, objectives in dual optimization, which correspond to the constraints in primal
optimization, are much more complicated than those in the primal problem. Relaxations
are usually involved during the construction of the dual problem. Due to relaxation, these
approaches are incomplete. The return type is BasicResult.

Duality [12] solves a Lagrangian relaxation of the optimization problem to obtain bounds on
the output. The dual problem is formulated as an unconstrained convex optimization problem,
which can be computed efficiently. Duality works for any activation function.

ConvDual [43] also uses a dual approach to estimate the bounds on the output. It obtains
a simplified dual problem by first making a convex relaxation of the network in the primal
optimization. The bounds are heuristically computed by choosing a fixed, dual feasible solution,
without any explicit optimization. In this way, ConvDual is more computationally efficient than
Duality. In the original ConvDual approach, the bounds are then used to robustly train the
network. This survey focuses on the method to compute the bounds.

Certify [31] uses a semidefinite relaxation to compute over approximated certificates (i.e.,
bounds). It only works for neural networks with only one hidden layer. It works for any ac-
tivation function that is differentiable almost everywhere.7 In the original Certify approach, 7 Differentiable a.e. means that the

function is differentiable every-
where except for countably many
points. Piecewise linear activation
functions are all differentiable a.e.

the certificates are then optimized jointly with network parameters to provide an adaptive
regularizer that improves robustness of the network. This survey focuses on the method to
obtain the certificates.

algorithms for verifying deep neural networks 11

3.4 Search and Reachability

Reachability methods need to balance computational efficiency and precision of the approxima-
tion. When reachability is combined with search, it is possible to improve both efficiency and
accuracy. These methods usually search in the input or the hidden spaces for a counter example.
However, due to over-approximation in reachability analysis, these methods are sound but
incomplete.

ReluVal [39], [40] uses symbolic interval analysis along with search to minimize over-
approximations of the output sets. During the search process, ReluVal iteratively bisects its
input range. This process is called iterative interval refinement, which is also used in BaB [7].

Fast-Lin [41] computes a certified lower bound on the allowable input disturbance for ReLU
networks using a layer-by-layer approach and binary search in the input domain.

Fast-Lip [41] depends on Fast-Lin to compute the bounds on the activation functions, and
further estimates the local Lipchitz constant of the network. In general, Fast-Lin is more scalable
than Fast-Lip, while Fast-Lip provides better solutions for `1 bounds.

DLV [18] searches for adversarial inputs layer by layer in the hidden layers. This is the only
approach that searches in the hidden spaces we have seen so far. DLV supports any activation
function.

3.5 Search and Optimization

Search can also be combined with optimization. We can either search in the input space, or
search in the function space. Searching in the function space is done by exploring possible
activation patterns. An activation pattern is an assignment (e.g., on or off for ReLU) to each
activation function in the network. These methods may use SAT or SMT.

Sherlock [10] estimates the output range using a combination of local search and global
search. Local search solves a linear program to find local optima. Global search solves a mixed
integer linear program to escape local optima, which is similar to the method in NSVerify and
MIPVerify. Sherlock is incomplete.

BaB [7] uses branch and bound to compute the output bounds of a network. It has a modu-
larized design that can serve as a unified framework that can support other methods such as
Reluplex and Planet.

Planet [13] integrates with a SAT solver for tree search in the function space. The objective
of the search is to find an activation pattern of ReLU networks that maps an input in X to an
output not in Y . It combines optimization-based filtering and pruning in the search process.
Planet is complete.

Reluplex [20] performs tree search in the function space. It extends the simplex algorithm, a
standard algorithm for solving linear programming (LP) instances, to support ReLU networks.
The algorithm is called Reluplex, for ReLU with the simplex method. Reluplex is complete.

4 Preliminaries

This section introduces additional notation and operations that will be used in different ver-
ification algorithms to be discussed in the following sections.8 Section 4.1 discusses interval 8 First-time readers may skip this

section and refer back when going
into the details of the algorithms.

arithmetic to compute node-wise bounds given an input set. Such node-wise bounds are needed
in many methods, such as MIPVerify, Duality, ConvDual, Planet, and Reluplex. Section 4.2
discusses interval refinement, which is used in ReluVal and BaB. Section 4.3 discusses methods

algorithms for verifying deep neural networks 12

to compute network gradient and bounds on the gradient given a non-trivial input set. The
bounds on the gradient are used in ReluVal and FastLin. Section 4.4 introduces specific notation
for ReLU activations.

We use [a]+ ..= max{a, 0} and [a]− = min{a, 0} to represent the positive and negative parts
of a scalar variable a. For a vector a or a matrix A, [·]+ and [·]− take element-wise max and min,
respectively.

4.1 Bounds

The lower and upper bounds on zi,j, i.e., the value of node j at layer i after activation, are
denoted `i,j and ui,j. The lower and upper bounds on ẑi,j, i.e., the value of node j at layer i
before activation, are denoted ˆ̀ i,j and ûi,j. The after-activation bounds for the whole layer i are
denoted `i and ui. The before-activation bounds for the whole layer i are denoted ˆ̀ i and ûi.
The bounds can be computed using different methods. For example, MaxSens uses interval
arithmetic, which will be discussed in section 5.4. Planet uses optimization to compute tight
bounds, which will be discussed in section 9.3. Because the optimization is difficult to solve,
ConvDual and FastLin relax the network constraints and analytically compute the bounds
using dynamic programming, which will be discussed in section 7.3 and section 8.2. Here we
introduce interval arithmetic.

Interval arithmetic By interval arithmetic, given the bounds at layer i − 1, the bounds at layer i
satisfy

ˆ̀ i,j = min
zi−1∈[`i−1,ui−1]

wi,jzi−1 + bi,j = [wi,j]+`i−1 + [wi,j]−ui−1 + bi,j, (15a)

ûi,j = max
zi−1∈[`i−1,ui−1]

wi,jzi−1 + bi,j = [wi,j]+ui−1 + [wi,j]−`i−1 + bi,j, (15b)

`i,j = min
ẑi,j∈[ˆ̀ i,j ,ûi,j]

σi,j(ẑi,j) = σi,j(ˆ̀ i,j), (15c)

ui,j = max
ẑi,j∈[ˆ̀ i,j ,ûi,j]

σi,j(ẑi,j) = σi,j(ûi,j), (15d)

where the implicit assumption for the last two equalities is that the activation σi,j is non-
decreasing. In the implementation, the bounds are usually stored as a list of hyperrectangles.
The bounds with respect to the input constraint X can be computed layer-by-layer using interval
arithmetic (15), to be discussed in algorithm 5.5. In the following discussion, we write interval
arithmetic with respect to linear mappings compactly as ⊗ where

W ⊗ [`, u] ..= [[W]+`+ [W]−u, [W]+u + [W]−`] , (16)

where ` and u can also be replaced with matrices. The function (16) is implemented in algo-
rithm 4.1. Hence, [ˆ̀ i, ûi] = Wi ⊗ [`i−1, ui−1] + [bi, bi].

function interval_map(W, l, u)

l_new = max.(W, 0) * l + min.(W, 0) * u

u_new = max.(W, 0) * u + min.(W, 0) * l

return (l_new, u_new)

end

Algorithm 4.1. Function to com-
pute linear mapping on inter-
vals which corresponds to equa-
tion (16).

algorithms for verifying deep neural networks 13

4.2 Interval Refinement

Figure 4. Illustration of interval
split. The high dimensional inter-
val on the left is split into two high
dimensional intervals on the right,
with respect to the horizontal axis.

Interval refinement is used in many methods including ReluVal and BaB. In those cases, a high
dimensional interval [`, u] is split in two at index i∗:

[`, u∗] and [`∗, u], (17)

where u∗ = u − ri∗ei∗ , `∗ = `+ ri∗ei∗ , ri∗ =
1
2 (ui∗ − `i∗), and ei is a unit vector whose entries

are all zero except at the ith entry. The index i∗ is determined using different methods. For
example, in BaB, the index i∗ is chosen to be the longest dimension, i.e., i∗ = arg maxi(ui − li).
The function to perform the split is implemented in algorithm 4.2. Figure 4 illustrates the split
of a two dimensional interval.

function split_interval(dom::Hyperrectangle, i::Int64)

input_lower, input_upper = low(dom), high(dom)

input_upper[i] = dom.center[i]

input_split_left = Hyperrectangle(low = input_lower, high = input_upper)

input_lower[i] = dom.center[i]

input_upper[i] = dom.center[i] + dom.radius[i]

input_split_right = Hyperrectangle(low = input_lower, high = input_upper)

return (input_split_left, input_split_right)

end

Algorithm 4.2. Function to split in-
terval at a specified index. The ar-
gument dom is the interval to be
split. The argument index is the in-
dex i∗ where the interval should be
split at. The function returns the
two hyperrectangles after the split,
which correspond to equation (17).

4.3 Gradient

The gradient of a neural network (of the output with respect to the input) satisfies the chain
rule,

∇f ..=
∂y
∂x

=
∂y
∂ẑn

∂ẑn

∂zn−1
· · · ∂z1

∂ẑ1

∂ẑ1

∂x
= ∇σnWn · · · ∇σ1W1, (18)

where ∇σi
..= ∂zi

∂ẑi
∈ Rki×ki .

In some cases, we evaluate the point-wise gradient ∇f(x0) for some x0. The point-wise
gradient is easy to compute by following the chain rule as shown in the first function in
algorithm 4.3. In other cases, e.g., in ReluVal and FastLip, we need to compute the maximum
gradient given an input set X , i.e., maxx∈X ∇f(x). The maximum over a vector is taken point-
wise. The maximum gradient can be computed using interval arithmetic.

Denote the lower and upper bounds of ∇σi with respect to the input set X as Λi ∈ Rki×ki

and Λi ∈ Rki×ki . The matrices Λi and Λi are diagonal. Due to the monotonicity assumption on
σi,

Λi ≥ Λi ≥ 0, (19)

where the inequalities are interpreted point-wise.
Define Gi

..= ∂zi
∂x and Ĝi

..= WiGi−1. Denote the lower and upper bounds of Gi as Gi, Gi ∈
Rki×k0 , and the lower and upper bounds of Ĝi as Ĝi, Ĝi ∈ Rki×k0 . The bounds on the gradients
are initialized as G0 = G0 = I, and can be updated inductively using interval arithmetic by
forward propagation,9 9 We can also use backward propa-

gation in the chain rule to compute
∇f. Then the update equation be-
comes ∂y

∂zi
= ∂y

∂zi+1
∇σi+1Wi+1.

Gi = ∇σiĜi = ∇σiWiGi−1. (20)

Given Gi−1 and Gi−1,
[Ĝi, Ĝi] = Wi ⊗ [Gi−1, Gi−1]. (21)

algorithms for verifying deep neural networks 14

The lower bound Gi on the gradient Gi is the minimum of ∇σiĜi, where ∇σi ∈ [Λi, Λi] and
Ĝi ∈ [Ĝi, Ĝi]. Since ∇σi ≥ 0 according to (19), the minimum of ∇σiĜi is achieved on the lower
bound of Ĝi. Hence,

Gi = min{ΛiĜi, ΛiĜi} = Λi[Ĝi]+ + Λi[Ĝi]−. (22)

Similarly, the upper bound on the gradient ∂zi
∂x satisfies

Gi = Λi[Ĝi]− + Λi[Ĝi]+. (23)

The function to compute the bounds on the gradient given a non-trivial input set is implemented
in algorithm 4.3. There is a solver, called RecurJac [50], that can efficiently compute the maximum
gradient in a recursive manner. 10 10 https://github.com/huanzhang

12/RecurJac-Jacobian-Bounds

function get_gradient(nnet::Network, x::Vector)

z = x

gradient = Matrix(1.0I, length(x), length(x))

for (i, layer) in enumerate(nnet.layers)

z_hat = affine_map(layer, z)

σ_gradient = act_gradient(layer.activation, z_hat)

gradient = Diagonal(σ_gradient) * layer.weights * gradient

z = layer.activation(z_hat)

end

return gradient

end

function get_gradient(nnet::Network, input::AbstractPolytope)

LΛ, UΛ = act_gradient_bounds(nnet, input)

return get_gradient(nnet, LΛ, UΛ)

end

function get_gradient(nnet::Network, LΛ::Vector{Matrix}, UΛ::Vector{Matrix})

n_input = size(nnet.layers[1].weights, 2)

LG = Matrix(1.0I, n_input, n_input)

UG = Matrix(1.0I, n_input, n_input)

for (i, layer) in enumerate(nnet.layers)

LG_hat, UG_hat = interval_map(layer.weights, LG, UG)

LG = LΛ[i] * max.(LG_hat, 0) + UΛ[i] * min.(LG_hat, 0)

UG = LΛ[i] * min.(UG_hat, 0) + UΛ[i] * max.(UG_hat, 0)

end

return (LG, UG)

end

Algorithm 4.3. Functions to com-
pute gradient. The first function
computes point-wise gradient,
where act_gradient (not shown)
computes the gradient of the
activation function. The second
and third functions compute the
bounds on the gradient given a
non-trivial input set. The input to
the second function is the input
set. It calls act_gradient_bounds

(not shown) to compute Λi and Λi .
The third function directly takes
the bounds on the gradient of
activation functions.

4.4 ReLU Activation

If σi is a ReLU activation function, i.e., σi(ẑi) = [zi]+, we associate a binary vector δi ∈ {0, 1}ki

for i ∈ {1, . . . , n} to specify activation status (off or on) of the nodes. At layer i, given the bounds
on the values of the nodes, we define the set of nodes that are activated Γ+

i , not activated Γ−
i ,

and undetermined Γi as

Γ+
i = {j : ˆ̀ i,j ≥ 0}, (24a)

Γ−
i = {j : ûi,j ≤ 0}, (24b)
Γi = {j : ˆ̀ i,j < 0 < ûi,j}. (24c)

https://github.com/huanzhang12/RecurJac-Jacobian-Bounds
https://github.com/huanzhang12/RecurJac-Jacobian-Bounds

algorithms for verifying deep neural networks 15

The diagonal entries λi,j and λi,j of the bounds Λi, Λi ∈ Rki×ki on the gradient ∇σi satisfy
that

λi,j =


1 j ∈ Γ+

i
0 j ∈ Γ−

i
1 j ∈ Γi

, λi,j =


1 j ∈ Γ+

i
0 j ∈ Γ−

i
0 j ∈ Γi

. (25)

5 Reachability

Reachability methods compute the output reachable set R(X , f) to verify the problem through
layer-by-layer analysis. This section first reviews the general methodology, and then discusses
the specific methods.

Figure 5. Illustration of reachabil-
ity methods. The network in the
illustration only contains one hid-
den layer. The input set X is first
passed through the linear mapping
defined by W1 and b1. Then it goes
through the nonlinear mapping de-
fined by σ1 (ReLU is considered).
The corresponding reachable sets
are illustrated in the shaded area.
The process is repeated for the next
layer. And the output reachable set
is then obtained.

5.1 Overview

The layer-by-layer propagation in reachability methods is illustrated in figure 5 and imple-
mented in algorithm 5.1. The function forward_network computes R. It calls forward_layer to
perform layer-by-layer forward propagation. Once it computes the reachable set, check_inclusion
verifies whether R(X , f) ⊂ Y .

function solve(solver, problem::Problem)

reach = forward_network(solver, problem.network, problem.input)

return check_inclusion(reach, problem.output)

end

function forward_network(solver, nnet::Network, input::AbstractPolytope)

reach = input

for layer in nnet.layers

reach = forward_layer(solver, layer, reach)

end

return reach

end

function check_inclusion(reach::Vector{<:AbstractPolytope}, output)

for poly in reach

issubset(poly, output) || return ReachabilityResult(:violated, reach)

end

return ReachabilityResult(:holds, similar(reach, 0))

end

Algorithm 5.1. General structure
of reachability methods. The prob-
lem is solved by first performing
layer-by-layer reachability analy-
sis as specified in forward_network,
then checking if the output reach-
able set belongs to the output con-
straint using check_inclusion. Dif-
ferent methods have different im-
plementations of forward_layer.
The outer loop solve can also vary
between methods.

algorithms for verifying deep neural networks 16

The function forward_layer involves the mapping zi−1 7→ σi(Wizi−1 + bi). The linear map-
ping defined by zi−1 7→ Wizi−1 + bi is relatively easy to handle. The nonlinear mapping
ẑi 7→ σi(ẑi) is non-trivial. Different methods introduce different ways to handle nonlinear
mappings. Hence, the implementation of forward_layer varies across different methods. There
are at least five different approaches in the literature:

(a)

(b)
Figure 6. Illustration of different
approaches to handle the nonlin-
ear mapping ẑi 7→ σi(ẑi). (a) Exact
reachability. (b) Split-and-join.

• Exact reachability (for piecewise linear networks), which computes the reachable set for every
linear segment of the network and keeps track of all sets. This is done by ExactReach [46].

• Split-and-join (for piecewise linear networks), which computes the reachable set for every
linear segment of the network and joins those sets by over-approximation. This is done by
Ai2 [14].

• Interval arithmetic (for networks with monotone activation functions), which computes the
bounds for each node separately by interval arithmetic. This is done by MaxSens [44].

• Symbolic propagation (for piecewise linear networks), which also computes the node-wise
bounds using interval arithmetic but keeps track of dependencies among nodes using sym-
bolic representations. This is done by ReluVal [40].

• Network relaxation (for piecewise linear networks), which computes symbolic lower and upper
bounds based on a linear approximation of the network. This is done by FastLin [41].

The first method is exact without approximation. The next three methods only approxi-
mate the geometric objects passed through different layers. The last method approximates the
network. The bounds can be computed using dynamic programming.

Figure 6 illustrates the difference between exact reachability and split-and-join in the case
that the activation function is ReLU. Two nodes are considered, i.e., zi ∈ R2. Hence, there are
four piecewise linear components in the nonlinear mapping ẑi 7→ σi(ẑi), which correspond to
the four quadrants shown in the left plots of figure 6. Under ReLU, the set in the first quadrant
(i.e., both values are greater than zero) is kept the same after the mapping. The sets in the
second and the fourth quadrants (i.e., only one value is greater than zero) are mapped to line
segments. The set in the third quadrant (i.e., both values are smaller than zero) is mapped to
the origin. Exact reachability keeps track of all geometric objects after the mapping. In figure 6a,
one input set generates four geometric objects to represent the reachable set. The number of
geometric objects grows exponentially with the number of nodes at each layer. On the other
hand, to improve scalability of the method, split-and-join methods merge all geometric objects
together as shown in figure 6b. Mathematical derivations will be introduced in section 5.2 for
exact reachability and in section 5.3 for split-and-join.

(a)

(b)
Figure 7. Illustration of the differ-
ence between interval arithmetic
and symbolic propagation. (a) In-
terval arithmetic. (b) Symbolic
propagation.

Exact reachability and split-and-join methods do not distinguish individual nodes, but con-
sider all nodes at a layer as a whole. Though these methods make it easy to track dependencies
between nodes, the resulting high dimensional geometric objects (usually polytopes) can be
inefficient to manipulate. Interval arithmetic considers node-wise reachability by computing
reachable intervals for all nodes separately as shown in figure 7a. Consequently, the reachable
set is a hyperrectangle, which is easy to manipulate. However, as the dependencies among
nodes are removed, interval arithmetic may result in significant over-approximation. Symbolic
propagation then introduces symbolic intervals to track those dependencies as shown in fig-
ure 7b. As illustrated in figure 7, symbolic propagation can generate much tighter bounds.11

11 To tighten the bounds in interval
arithmetic, in addition to do sym-
bolic propagation, we can also di-
vide the input space into smaller in-
tervals, and compute the reachable
output intervals for those small in-
tervals. This approach is used in
MaxSens and ReluVal.

algorithms for verifying deep neural networks 17

Rigorous mathematical derivations will be introduced in section 5.4 for interval arithmetic and
section 8.1 for symbolic propagation.

For different methods, their outer loops, e.g., the solve function, can also be different. The
simplest outer loop is shown in algorithm 5.1, which works for ExactReach and Ai2. In some
methods, the inputs are split into smaller segments to minimize over-approximation as illus-
trated in figure 8.12 The reachable set for each segment is computed and then joined together. 12 Recall split_interval, first in-

troduced in section 4.MaxSens uses this approach. However, blindly splitting the input set may not be efficient. By
combining with search, we can look for the most influential inputs to split. ReluVal uses this
approach. We may also use binary search to adjust the radius of the segment, which is adopted
in FastLin.

This section discusses ExactReach, Ai2, and MaxSens. ReluVal and FastLin will be discussed
in section 8.

5.2 ExactReach

(a) (b)
Figure 8. Splitting the input set to
minimize over-approximation. The
upper square is the input domain
and the lower square is the output
domain. (a) Over-approximated
reachable set (gray square in the
output domain) without partition.
(b) Over-approximated reachable
sets for different segments of the
input set. Colors show correspon-
dence.

ExactReach [46] performs exact reachability analysis for networks with linear or ReLU activa-
tions. For any ReLU function, if the input set is a union of polytopes, then the output reachable
set is also a union of polytopes as shown in figure 6a. In the implementation, the input set and
output set are both set to HPolytope. The function to compute the reachable set for a single layer
is shown in algorithm 5.2, which is called in the main loop of algorithm 5.1.

The input set to layer i consists of a list of H-polytopes. One input H-polytope parameterized
by C ∈ Rk×ki−1 and d ∈ Rk defines a set

I = {zi−1 : Czi−1 ≤ d}, (26)

where k is the number of constraints. After the linear mapping zi−1 7→ Wizi−1 + bi, the set
before activation is denoted

Î = {ẑi : Ĉẑi ≤ d̂}, (27)

where Ĉ ∈ Rk×ki and d̂ ∈ Rk. The number of inequality constraints k in (27) may be different
from that in (26). The set Î can be computed by calling linear_transform, which converts I
into a V-polytope, applies the linear map to all vertices, then converts it back to an H-polytope.

The set Î can be partitioned into several non-intersecting subsets according to different
activation patterns. The activation status for zi is denoted δi ∈ {0, 1}ki . Since the entries in
δi are binary, there is a bijection between δi and an integer h ∈ {0, 1, . . . , 2ki − 1}.13 Define a 13 When h = 0, all nodes are inac-

tive. When h = 2ki − 1, all nodes
are active.

diagonal matrix Ph ∈ Rki×ki , whose diagonal entries are the entires in the binary vector δi.
Hence, there is a correspondence between Ph and the integer h. For a given activation δi, the
before activation node ẑi needs to satisfy that if δi,j = 1, then ẑi,j ≥ 0; and if δi,j = 0, then ẑi,j ≤ 0.
The subset of Î that corresponds to the hth activation pattern is

Îh = {ẑi : Phẑi ≥ 0, (I − Ph)ẑi ≤ 0, Ĉẑi ≤ d̂}. (28)

In a compact form, the constraint on ẑi is[
Ĉ

I − 2Ph

]
ẑi ≤

[
d̂
0

]
. (29)

The expression I − 2Ph is a diagonal matrix whose entries are either 1 (for inactive nodes) or
−1 (for active nodes). The constraint (I − 2Ph)ẑi ≤ 0 is a combination of the two constraints
Phẑi ≥ 0 and (I − Ph)ẑi ≤ 0.

algorithms for verifying deep neural networks 18

For ẑi ∈ Îh, the after activation nodes satisfy that zi = Phẑi. Hence, the reachable set Oh for
Îh is a linear transform ẑi → Phẑi of Îh defined by (29). We write the linear transformation as

Oh = Ph ◦ Îh. (30)

The above process is implemented in forward_partition.
Finally, the output reachable set for I is the union of all Oh,

O =
2ki−1⋃
h=0

Oh. (31)

It has been shown that the output set O is tight [46], meaning that it is not an over-approximation
in the sense that for any point zi in O, there is a point zi−1 in I satisfying zi = fi(zi−1).

For one input polytope, the output for one layer generates 2ki polytopes. Hence, the number
of polytopes grows exponentially with the depth. Though the empty sets can be pruned out in
the process, it is still inefficient to keep track of the exact reachable set for large neural networks.
Xiang, Tran, and Johnson developed a toolbox, called NNV,14 for efficient reachability analysis 14 https://github.com/verivital

/nnv.using parallel computation.

struct ExactReach end

function forward_layer(solver::ExactReach, layer::Layer, input::HPolytope)

input = affine_map(layer, input)

return forward_partition(layer.activation, input)

end

function forward_partition(act::ReLU, input::HPolytope)

n = dim(input)

output = Vector{HPolytope}(undef, 0)

C, d = tosimplehrep(input)

dh = [d; zeros(n)]

for h in 0:(2^n)-1

P = getP(h, n)

Ch = [C; I - 2P]

input_h = HPolytope(Ch, dh)

if !isempty(input_h)

push!(output, linear_map(Matrix{Float64}(P), input_h))

end

end

return output

end

Algorithm 5.2. ExactReach. The
main process follows from algo-
rithm 5.1. In the forward_layer

function, each input set I first goes
through an affine map to Î . Then
the function forward_partition

partitions Î into Îh for the hth acti-
vation pattern. The output set Oh
for each Îh is computed using lin-
ear transformation and the reach-
able set is a union of all these Oh.

5.3 Ai2

In many cases, the exact reachable set is intractable. In Ai2 [14], an estimate R̃(X , f) of the
reachable set is obtained such that R(X , f) ⊆ R̃(X , f).

https://github.com/verivital/nnv
https://github.com/verivital/nnv

algorithms for verifying deep neural networks 19

Ai2 uses an abstract domain to approximate the reachable set at each layer, which is represented
by a set of logical formulas that capture certain geometric shapes, such as the geometries and
their formulas introduced in section 2.2.15 The choice of abstract domain needs to balance 15 A detailed discussion of an ab-

stract domain for certifying neu-
ral networks can be found in [34].
An extended version of Ai2, called
ERAN, which is robust to floating
point arithmetic [34], can be found
in https://github.com/eth-sri

/eran. An approach that combines
Ai2 with mixed integer optimiza-
tion is discussed in Singh et al. [35].

between precision and scalability. For example, the polytopes used in ExactReach are precise
but not scalable, while the hyperrectangles used in MaxSens are scalable but too loose. The
original implementation of Ai2 uses zonotopes, center-symmetric convex closed polytopes,
which are more scalable than polytopes and tighter than hyperrectangles. Due to lack of tools
to manipulate geometries defined by zonotopes, we use polytopes in our implementation.

Ai2 works for piecewise linear activation functions, e.g., ReLU and max pooling. Any piece-
wise linear activation function can be described as one conditional affine transformation (CAT),
which consists of a set of linear conditions and a set of affine mappings corresponding to the
linear conditions. For example, for a ReLU activation,

σi(ẑi) =


P0ẑi if (I − 2P0)ẑi ≤ 0
P1ẑi if (I − 2P1)ẑi ≤ 0
...
P2ki−1ẑi if (I − 2P2ki−1)ẑi ≤ 0

, (32)

where Ph for different h is defined in section 5.2. Each condition corresponds to one specific
activation pattern.

To propagate an abstract domain through a CAT, Ai2 introduces two basic operations: meet
(u) and join (t). The meet operation splits an abstract domain into different subdomains that
correspond to different conditions of the CAT. Due to the restriction of the abstract domain,
those subdomains may be over-approximated and overlap with each other. For example, if
the abstract domain is chosen to be hyperrectangles, then a subdomain corresponding to the
condition (I − 2Ph)ẑi ≤ 0 is the smallest hyperrectangle that includes all points that satisfy
the condition. After the meet operation, the reachable sets of those subdomains are computed
with respect to the linear maps under the corresponding conditions. The join operation then
uses one instance of the abstract domain to cover and approximate all the reachable sets. The
implementation of the meet and join operations is deeply related to the chosen abstract domain.
If the abstract domain is the polytope domain, ExactReach also splits the input set according to
different cases and computes Oh in different cases. However, ExactReach does not have a join
operation. Instead, it keeps track of all sets in (31).

Our implementation is shown in algorithm 5.3. For simplicity, we only consider ReLU
activations. The input and output sets are both polytopes.

An input set I at layer i goes through the linear map defined by Wi and bi. The matrix Wi

rotates the set I and bi shifts the center of the set. The set after those linear maps is denoted Î .
Then the output set is

Îh = Î u {ẑi : (I − 2Ph)ẑi ≤ 0}, (33a)
Oh = Ph ◦ Îh, (33b)

O = t2ki−1
h=0 Oh. (33c)

where (33a) is the meet step, (33b) the linear mapping, and (33c) the join step. (33a) is the same
as in (30). The meet function adds more constraints to the set. Since the mapping in (33b) is
linear, we can efficiently compute the output set by simply mapping all vertices. Then all those
sets are joined using a convex hull.16

16 The original implementation of
Ai2 uses a zonotope to represent
the abstract domain. The meet and
join operations are implemented
differently and are customized for
zonotopes.

https://github.com/eth-sri/eran
https://github.com/eth-sri/eran

algorithms for verifying deep neural networks 20

For one input polytope, the output reachable set is still one polytope. Hence, Ai2 is much more
scalable than ExactReach, though the over-approximation results in incompleteness. Following
Ai2, the authors introduced DeepZ [33], which can scale to other activation functions, and
is robust to floating point operations. Recently, Yang et al. introduce a method combining
abstract domain with symbolic propagation to further improve scalability and precision of the
verification algorithm [49].

struct Ai2 end

function forward_layer(solver::Ai2, layer::Layer, input::AbstractPolytope)

outlinear = affine_map(layer, input)

relued_subsets = forward_partition(layer.activation, outlinear)

return convex_hull(relued_subsets)

end

Algorithm 5.3. Ai2. Every set goes
through meet and join as defined
in equation (33). Note that in the
case of H-polytope input sets, meet
and join are equivalently replaced
with forward_partition (defined
in algorithm 5.2) and convex_hull,
respectively. The meet operation
computes the part of input that sat-
isfies a given activation pattern by
adding more linear constraints to
the input HPolytope according to
equation (33a).5.4 MaxSens

MaxSens [44] is also a reachability method that uses over-approximation. It works for networks
with monotone activation functions and low-dimensional input and output spaces. The key
idea of MaxSens is to grid the input space and compute the reachable set for each grid cell.
The finer the grid cells, the smaller the over-approximation. Computing the reachable sets for
different cells can be done in parallel.

Algorithm 5.4 provides an implementation of MaxSens. The input set is a hyperrectangle.
The output set can be any abstract polytope. There is one more step in the main loop than in
the general solve function in algorithm 5.1, which is to partition the input set into several grid
cells. The forward_layer function takes a hyperrectangle input set and outputs the reachable
hyperrectangle.

Suppose the input set at layer i is

I = {zi−1 : |zi−1 − ci−1| ≤ ri−1}, (34)

where ci−1 ∈ Rki−1 is the center of the hyperrectangle and ri−1 ∈ Rki−1 is the radius of the
hyperrectangle. The output reachable set is over-approximated by a hyperrectangle

O = {zi : |zi − ci| ≤ ri}, (35)

where ci, ri ∈ Rki .

(a)

(b)

(c)
Figure 9. Illustration of different ap-
proximations of output reachable
sets. (a) Center-aligned set with
uniform radius. (b) Center-aligned
set with non uniform radius. (c)
Tight set.

For simplicity, define the following node-wise values for layer i,

β j = σi,j(wi,jci−1 + bi,j), (36a)
βmax

j = σi,j(wi,jci−1 + |wi,j|ri−1 + bi,j), (36b)

βmin
j = σi,j(wi,jci−1 − |wi,j|ri−1 + bi,j), (36c)

where σi,j is the activation function for the jth node, and wi,j is the jth row of Wi. Due to
monotonicity of σi,j, we have

zi,j = σi,j(wi,jzi−1 + bi,j) ∈ [βmin
j , βmax

j], ∀zi−1 ∈ I . (37)

There are three different ways to define the over-approximated set O as illustrated in figure 9.

algorithms for verifying deep neural networks 21

• Center-aligned set with uniform radius.

As illustrated in figure 9a, the output set O is constructed to be a hypercube by setting
all entries of ri to be equal to its maximum element. Though the reachable set becomes
looser, this method requires less memory to store intermediate results because we only
need to store a scalar bound instead of a vector of bounds. The uniform bound indeed
represents the ‘‘maximum sensitivity’’ of the network given the input set. However, since
we use Hyperrectangle objects to store intermediate results anyway, a uniform bound does
not significantly enhance efficiency. Hence, our implementation uses a non-uniform bound
for both I and O.

• Center-aligned set with non-uniform radius.

As illustrated in figure 9b, the output set O is no longer required to have uniform radius.
By requiring that the center of the input hyperrectangle I maps to the center of the output
hyperrectangle O, the center and radius of the O can be obtained, for all j ∈ {1, . . . , ki},

ci,j = β j, (38a)
ri,j = max

zi−1∈I
|σi,j(wi,jzi−1 + bi,j)− ci,j| (38b)

= max{βmax
j − β j, β j − βmin

j }. (38c)

where ri,j and ci,j are the jth entry in ri and ci. The last equality is due to the monotonicity of
σi,j.

• Tight set.

A even tighter result can be obtained by directly using βmin
j and βmax

j as bounds and not
aligning the centers of I and O. As illustrated in figure 9c, the center and radius of the tight
set can be defined as

ci,j =
βmin

j + βmax
j

2
, (39a)

ri,j =
βmax

j − βmin
j

2
. (39b)

Equivalently, the output set can be represented as

O∗ = {zi : βmin
j ≤ zi,j ≤ βmax

j , ∀j}. (40)

It is easy to show that the resulting node-wise bounds are the same as the bounds computed
in (15) by interval arithmetic.

The last two cases are implemented in forward_node. In algorithm 5.4, the solver has a
boolean field tight. When tight is set to be true, it computes the set in (39). Otherwise, it
computes the center-aligned set in (38). The center-aligned set is desired if we want to estimate
the maximum sensitivity (or maximum gradient) of the network f at the center of the input set.

algorithms for verifying deep neural networks 22

The advantage of MaxSens over other reachability methods is that the number of geometric
objects does not grow during the layer-by-layer propagation. The total number of hyperrectan-
gles only depends on the the initial partition. Though the number of hyperrectangles will not
grow during the layer-by-layer propagation, the error of over-approximation will accumulate
quickly with respect to the number of layers. For networks with many input nodes, the number
of hyperrectangles on the initial partition can be prohibitively large for a tight estimation. Oth-
erwise, the computation with a sparse partition will be overly conservative [47]. To improve the
initial partition, the authors developed a specification-guided method [47] that can adaptively
choose the partition resolution according to the problem specification.

Some of the methods discussed later need to compute the bounds of each node. We imple-
ment the get_bounds function in algorithm 5.5 based on MaxSens, but with the tighter output
reachable set (39), which is equivalent to the interval arithmetic introduced in (15) in section 4.

struct MaxSens

resolution::Float64 = 1.0

tight::Bool = false

end

function solve(solver::MaxSens, problem::Problem)

inputs = partition(problem.input, solver.resolution)

f_n(x) = forward_network(solver, problem.network, x)

outputs = map(f_n, inputs)

return check_inclusion(outputs, problem.output)

end

function forward_layer(solver::MaxSens, L::Layer, input::Hyperrectangle)

(W, b, act) = (L.weights, L.bias, L.activation)

center = zeros(size(W, 1))

gamma = zeros(size(W, 1))

for j in 1:size(W, 1)

node = Node(W[j,:], b[j], act)

center[j], gamma[j] = forward_node(solver, node, input)

end

return Hyperrectangle(center, gamma)

end

function forward_node(solver::MaxSens, node::Node, input::Hyperrectangle)

output = node.w' * input.center + node.b

deviation = sum(abs.(node.w) .* input.radius)

β = node.act(output)

βmax = node.act(output + deviation)

βmin = node.act(output - deviation)

if solver.tight

return ((βmax + βmin)/2, (βmax - βmin)/2)

else

return (β, max(abs(βmax - β), abs(βmin - β)))

end

end

Algorithm 5.4. MaxSens. The main
solve function is slightly differ-
ent from the general reachability
method in algorithm 5.1 by adding
a partition step. In forward_layer,
the bounds are computed for each
node using a method similar to in-
terval arithmetic.

algorithms for verifying deep neural networks 23

function get_bounds(problem::Problem)

solver = MaxSens(1.0, true)

bounds = Vector{Hyperrectangle}(length(nnet.layers) + 1)

bounds[1] = input

for (i, layer) in enumerate(nnet.layers)

bounds[i+1] = forward_layer(solver, layer, bounds[i])

end

return bounds

end

Algorithm 5.5. Function to com-
pute node-wise bounds. It outputs
the tight bounds in MaxSens.

6 Primal Optimization

There can be many different designs of the optimization problem to verify (4). A common
structure is

min
x,y

o(x, y,X ,Y), (41a)

s.t. x ∈ X , y /∈ Y , y = f(x), (41b)

where o(x, y,X ,Y) is an objective function, which may depend on the input x, the output y and
their domains X and Y . We can either minimize or maximize the objective function. The major
difficulty in solving (41) is the nonlinear and non-convex constraint imposed by the network f.

NSVerify [23] and MIPVerify [38] reformulate the problem (41) into a mixed integer lin-
ear programming (MILP). Iterative LP (ILP) [4] approximates the problem (41) as a linear
programming and solves it by iteratively adding the constraints.

This section first provides an overview of common methods to simplify the primal opti-
mization problem, then discusses the three methods (i.e., NSVerify, MIPVerify, ILP) in detail.
For simplicity, we only consider ReLU activations. There are different ways to encode ReLU
networks as linear constraints. The following two types of variables are usually used as decision
variables in the optimization.17 17 NSVerify, MIPVerify, and ILP use

these two kinds of variables. Other
methods may use different sets of
variables. For example, Reluplex
uses zi and ẑi as decision variables.

• Variables for all nodes, i.e., , zi ∈ Rki for i ∈ {0, 1, . . . , n}.

• Variables for all activations, i.e., δi ∈ {0, 1}ki for i ∈ {1, . . . , n}.

Our implementation uses JuMP.jl18 to model and solve the optimizations. In the following 18 https://github.com/jump.jl

discussion, Model refers to a jump model and solve(::Model) calls the JuMP solver to solve the
optimization problem encoded in the model.

6.1 Encoding Network as Constraints

Figure 10. Illustration of ReLU acti-
vation function.

Primal optimization needs to deal with the constraint imposed by the network. The constraint
y = f(x) is equivalent to

zi,j = [wi,jzi−1 + bi,j]+, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , ki}. (42)

There are different ways to encode (42). For given activations δi, equation (42) can be encoded
as linear constraints as shown in algorithms 6.1 to 6.3. For given bounds `i and ui, equation (42)
can be encoded as linear constraints via triangle relaxation as shown in algorithm 6.4. Or (42)
can be encoded as mixed integer linear constraints as shown in algorithms 6.5 and 6.6. In the
following discussion, we use ẑi,j for wi,jzi−1 + bi,j, though ẑi,j is not a variable to be considered
in the optimization.

https://github.com/jump.jl

algorithms for verifying deep neural networks 24

Linear constraints for given δi For a given activation δi for any i, the network can be encoded as
a set of linear constraints for j ∈ {1, . . . , ki} :

δi,j = 1 ⇒ zi,j = ẑi,j ≥ 0, (43a)
δi,j = 0 ⇒ zi,j = 0, ẑi,j ≤ 0. (43b)

Figure 11. Illustration of linear en-
coding for given δ. If δ is unknown,
it corresponds to mixed integer en-
coding. The δ axis is perpendicular
to the z − ẑ plane in 3D.

The function is shown in algorithm 6.1. These constraints represent a subset of the original
constraint (42), since the activation pattern is determined. This function is called in local search
in Sherlock.

abstract type AbstractLinearProgram end

struct StandardLP <: AbstractLinearProgram end

function encode_network!(model::Model, network, z, δ,

encoding::AbstractLinearProgram)

for (i, layer) in enumerate(network.layers)

encode_layer!(encoding, model, layer, z[i], z[i+1], δ[i])

end

return encoding

end

function encode_layer!(::StandardLP, model, layer, zᵢ, zᵢ₊₁, δᵢ₊₁)

ẑ = affine_map(layer, zᵢ)

for j in 1:length(layer.bias)

if δᵢ₊₁[j]

@constraint(model, ẑ [j] >= 0.0)

@constraint(model, zᵢ₊₁[j] == ẑ [j])

else

@constraint(model, ẑ [j] <= 0.0)

@constraint(model, zᵢ₊₁[j] == 0.0)

end

end

end

Algorithm 6.1. Encoding the
network as linear constraints
for given δi . The function
encode_newtork! encodes the
constraints layer by layer by calling
encode_layer!. The encoding
method is specified in the abstract
type AbstractLinearProgram.

Figure 12. Illustration of relaxed lin-
ear encoding for given δ.

Relaxed linear constraints for given δi In some cases, we drop the inequalities in (43) to get a
relaxed encoding to ensure that the optimization problem is still feasible for infeasible activation
δi’s. The relaxed encoding is

δi,j = 1 ⇒ zi,j = ẑi,j, (44a)
δi,j = 0 ⇒ zi,j = 0. (44b)

The function is shown in algorithm 6.2 and illustrated in figure 12. This function is used in ILP.

Slack linear constraints for given δi The previous relaxed linear encoding allows violation of the
constraints imposed by ReLU’s. We can use slack variables si,j’s to estimate the violations in the
linear constraints (43):

δi,j = 1 ⇒ ẑi,j + si,j ≥ 0, (45a)
δi,j = 0 ⇒ ẑi,j − si,j ≤ 0. (45b)

The function is shown in algorithm 6.3. It is used in Planet in order to detect conflicts among
different δ’s.

algorithms for verifying deep neural networks 25

struct LinearRelaxedLP <: AbstractLinearProgram end

function encode_layer!(::LinearRelaxedLP, model, layer, zᵢ, zᵢ₊₁, δᵢ₊₁)

ẑ = affine_map(layer, zᵢ)

for j in 1:length(layer.bias)

if δᵢ₊₁[j]

@constraint(model, zᵢ₊₁[j] == ẑ [j])

else

@constraint(model, zᵢ₊₁[j] == 0.0)

end

end

end

Algorithm 6.2. Encoding the net-
work as relaxed linear constraints
for given δi . Only the function
encode_layer! is shown. The func-
tion encode_network! is the same
as in algorithm 6.1.

struct SlackLP <: AbstractLinearProgram

slack::Vector{Vector{VariableRef}}

end

function encode_layer!(SLP::SlackLP, model, layer, zᵢ, zᵢ₊₁, δᵢ₊₁)

ẑ = affine_map(layer, zᵢ)

slack_vars = @variable(model, [1:length(layer.bias)])

for j in 1:length(layer.bias)

if δᵢ₊₁[j]

@constraint(model, zᵢ₊₁[j] == ẑ [j] + slack_vars[j])

@constraint(model, ẑ [j] + slack_vars[j] >= 0.0)

else

@constraint(model, zᵢ₊₁[j] == slack_vars[j])

@constraint(model, 0.0 >= ẑ [j] - slack_vars[j])

end

end

push!(SLP.slack, slack_vars)

end

Algorithm 6.3. Encoding the net-
work as slack linear constraints
for given δi . Only the function
encode_layer! is shown. The func-
tion encode_network! is the same
as in algorithm 6.1.

algorithms for verifying deep neural networks 26

Triangle relaxation for given `i and ui When we can bound the value of the nodes, we can use
∆-relaxation to encode the constraint as

j ∈ Γ+
i ⇒ zi,j = ẑi,j, ẑi,j ≥ 0, (46a)

j ∈ Γ−
i ⇒ zi,j = 0, ẑi,j ≤ 0, (46b)

j ∈ Γi ⇒ zi,j ≥ ẑi,j, zi,j ≥ 0, zi,j ≤
ûi,j(ẑi,j − ˆ̀ i,j)

ûi,j − ˆ̀ i,j
, (46c)

where activated nodes Γ+
i , unactivated nodes Γ−

i , and undetermined nodes Γi are introduced
in (24). The function for ∆-relaxation is shown in algorithm 6.4. The function linear_transform

corresponds to (15). ∆-relaxation is used in ConvDual and Planet.
Figure 13. Illustration of triangle
relaxation.

struct TriangularRelaxedLP <: AbstractLinearProgram end

function encode_layer!(::TriangularRelaxedLP, model, layer, zᵢ, zᵢ₊₁, bounds)

ẑ = affine_map(layer, zᵢ)

ẑ _bound = approximate_affine_map(layer, bounds)

l̂ , û = low(ẑ _bound), high(ẑ _bound)

for j in 1:length(layer.bias)

if l̂ [j] > 0.0

@constraint(model, zᵢ₊₁[j] == ẑ [j])

elseif û [j] < 0.0

@constraint(model, zᵢ₊₁[j] == 0.0)

else

slope = û [j] / (û [j] - l̂ [j])

@constraints(model, begin

zᵢ₊₁[j] >= ẑ [j]

zᵢ₊₁[j] <= slope * (ẑ [j] - l̂ [j])

zᵢ₊₁[j] >= 0.0

end)

end

end

end

Algorithm 6.4. Encoding the net-
work as linear constraints for given
`i and ui via ∆-relaxation. Only the
function encode_layer! is shown.
The function encode_network! is
the same as in algorithm 6.1.

Figure 14. Illustration of parallel re-
laxation.

Parallel relaxation for given `i and ui Parallel relaxation is very similar to ∆-relaxation, except
that (46c) becomes

j ∈ Γi ⇒
ûi,j

ûi,j − ˆ̀ i,j
ẑi,j ≤ zi,j ≤

ûi,j

ûi,j − ˆ̀ i,j
(ẑi,j − ˆ̀ i,j). (47)

Parallel relaxation is used in FastLin for network relaxation before applying reachability meth-
ods. To the best of our knowledge, it has not been used directly in any optimization method
yet. The implementation of constraint encoding under parallel relaxation is not provided in the
paper.

algorithms for verifying deep neural networks 27

Naive mixed integer linear constraints The nonlinear constraint (42) can be formulated as a set
of linear constraints:

zi,j ≥ ẑi,j, (48a)
zi,j ≥ 0, (48b)
zi,j ≤ ẑi,j + mδi,j, (48c)
zi,j ≤ m(1 − δi,j), (48d)

where m should be sufficiently large. If m is not large enough, the encoding may lead to error.
The function is shown in algorithm 6.5. NSVerify calls this function.

struct MixedIntegerLP <: AbstractLinearProgram

m::Float64

end

function encode_layer!(MIP::MixedIntegerLP, model, layer, zᵢ, zᵢ₊₁, δᵢ₊₁)

m = MIP.m

ẑ = affine_map(layer, zᵢ)

for j in 1:length(layer.bias)

@constraints(model, begin

zᵢ₊₁[j] >= ẑ [j]

zᵢ₊₁[j] >= 0.0

zᵢ₊₁[j] <= ẑ [j] + m * δᵢ₊₁[j]

zᵢ₊₁[j] <= m - m * δᵢ₊₁[j]

end)

end

end

Algorithm 6.5. Encoding as
mixed integer linear constraints
using a sufficiently large
number m. Only the function
encode_layer! is shown. The
function encode_network! is the
same as in algorithm 6.1.

Mixed integer linear constraints for given `i and ui When we have the bounds, the constraints
can be more tightly encoded:

zi,j ≥ ẑi,j, (49a)
zi,j ≥ 0, (49b)
zi,j ≤ ûi,jδi,j, (49c)
zi,j ≤ ẑi,j − ˆ̀ i,j(1 − δi,j). (49d)

The function is shown in algorithm 6.6.

6.2 Objective Functions

In primal optimization, there are multiple ways to design the objective. Some of them are listed
in algorithm 6.7.

Violation of linear constraints In many cases, the objective function is chosen to measure the
violation of the constraints. For example, when Y is represented by a half space (9), we maximize
the following objective function

o ..= c>y − d. (50)

Such design directly tells how much the output constraints can be violated in the problem (4).
This objective is used in dual optimization methods, e.g., Duality, ConvDual, and Certify.

algorithms for verifying deep neural networks 28

struct BoundedMixedIntegerLP <: AbstractLinearProgram end

function encode_layer!(::BoundedMixedIntegerLP, model, layer,

zᵢ, zᵢ₊₁, δᵢ₊₁, bounds)

ẑ = affine_map(layer, zᵢ)

ẑ _bound = approximate_affine_map(layer, bounds)

l̂ , û = low(ẑ _bound), high(ẑ _bound)

for j in 1:length(layer.bias)

if l̂ [j] >= 0.0

@constraint(model, zᵢ₊₁[j] == ẑ [j])

elseif û [j] <= 0.0

@constraint(model, zᵢ₊₁[j] == 0.0)

else

@constraints(model, begin

zᵢ₊₁[j] >= ẑ [j]

zᵢ₊₁[j] >= 0.0

zᵢ₊₁[j] <= û [j] * δᵢ₊₁[j]

zᵢ₊₁[j] <= ẑ [j] - l̂ [j] * (1 - δᵢ₊₁[j])

end)

end

end

end

Algorithm 6.6. Encoding as mixed
integer linear constraints using the
bounds on node values. Only the
function encode_layer! is shown.
The function encode_network! is
the same as in algorithm 6.1.

Maximum disturbance The objective can also measure the maximum allowable disturbance.
The disturbance with respect to a given input x0 is computed as

o ..= ‖x − x0‖∞. (51)

The maximum allowable disturbance is computed by minimizing o with respect to the constraint
that f(x) /∈ Y . This objective is used in MIPVerify and ILP.

Summation of variables The objective can also be

o ..= ∑
i,j

zi,j or ∑
i,j

si,j. (52)

The summation of neurons is used to compute tighter bounds in Planet. The summation of
slack variables is used in Planet.

6.3 NSVerify

NSVerify[23] takes any linear constraints X and Y , and considers networks with only ReLU
activations. NSVerify encodes the ReLU activation functions as a set of mixed integer linear
constraints. It does not need an objective. The method is sound and complete.

Our implementation is shown in algorithm 6.8. The solver needs to specify m in (48). The
solver first initializes variables zi and δi for all i. Then the solver adds the input constraint
z0 ∈ X as well as the complement of the output constraint zn /∈ Y . Then it encodes the network
as a set of mixed integer linear constraints. If there is a solution for the optimization, then we
get a counter example. If not, the property is satisfied. In the implementation, for simplicity, we
require that X is an HPolytope and Y a PolytopeComplement.

algorithms for verifying deep neural networks 29

function linear_objective!(mode::Model, map::HPolytope, var)

c, d = tosimplehrep(map)

o = c * var - d

@objective(model, Min, o)

return o

end

function max_disturbance!(model::Model, var)

o = symbolic_infty_norm(var)

@objective(model, Min, o)

return o

end

function min_sum!(model::Model, var)

o = sum(sum.(var))

@objective(model, Min, o)

return o

end

function max_sum!(model::Model, var)

o = sum(sum.(var))

@objective(model, Max, o)

return o

end

Algorithm 6.7. Objective func-
tions: zero objective, linear objec-
tive, minimax disturbance, mini-
mal summation, and maximal sum-
mation.

struct NSVerify

optimizer

m::Float64

end

function solve(solver::NSVerify, problem::Problem)

network = problem.network

model = Model(solver)

neurons = init_neurons(model, network)

deltas = init_deltas(model, network)

add_set_constraint!(model, problem.input, first(neurons))

add_complementary_set_constraint!(model, problem.output, last(neurons))

encode_network!(model, network, neurons, deltas, MixedIntegerLP(solver.m))

feasibility_problem!(model)

optimize!(model)

if termination_status(model) == OPTIMAL

return CounterExampleResult(:violated, value.(first(neurons)))

end

if termination_status(model) == INFEASIBLE

return CounterExampleResult(:holds)

end

return CounterExampleResult(:unknown)

end

Algorithm 6.8. NSVerify. The ver-
ification problem is encoded as a
mixed integer linear program. The
naive encoding discussed in algo-
rithm 6.5 is used in NSVerify. The
parameter m is specified by the
solver.

algorithms for verifying deep neural networks 30

6.4 MIPVerify

MIPVerify [38] can be viewed as a direct extension of NSVerify. It also encodes the network as
mixed integer constraints. But the encoding is more efficient since MIPVerify pre-computes the
bounds of the problem. In this way, the solver does not need to specify m as in NSVerify.19 19 The original code can be found

at https://github.com/vtjeng/MI
PVerify.jl.

Our implementation is shown in algorithm 6.9. Similar to NSVerify, the solver first initializes
variables zi and δi for all i. Then the solver adds the complement of the output constraint
zn /∈ Y . Then it computes the bounds for the neurons, and encodes the network as a set of mixed
integer linear constraints. The objective is to compute the maximum allowable disturbance. The
satisfiability is determined by comparing the allowable range of disturbance with the input
set. In the implementation, for simplicity, we require that X is a Hyperrectangle and Y is a
PolytopeComplement. MIPVerify supports the max activation function and the `p norm in the
objective, which have not been supported yet in our implementation.

struct MIPVerify

optimizer

end

function solve(solver::MIPVerify, problem::Problem)

model = Model(solver)

neurons = init_neurons(model, problem.network)

deltas = init_deltas(model, problem.network)

add_complementary_set_constraint!(model, problem.output, last(neurons))

bounds = get_bounds(problem)

encode_network!(model, problem.network, neurons,

deltas, bounds, BoundedMixedIntegerLP())

o = max_disturbance!(model, first(neurons) - problem.input.center)

optimize!(model)

if termination_status(model) == INFEASIBLE

return AdversarialResult(:holds)

end

if value(o) >= maximum(problem.input.radius)

return AdversarialResult(:holds)

else

return AdversarialResult(:violated, value(o))

end

end

Algorithm 6.9. MIPVerify. The ver-
ification problem is encoded as a
mixed integer linear program. The
bounds of node values are consid-
ered in the encoding. MIPVerify
computes the maximum allowable
disturbance.

6.5 ILP

ILP [4] encodes ReLU networks as linear constraints. It only considers a linear portion of the
network that has the same activation pattern as the reference input. In our implementation, the
reference input is chosen as the center of the input constraint set. The resulting problem can
be solved by simply encoding a linear program using (43), where δi,j’s denote the activation
status of the reference input. To speed up the computation, ILP introduces iterative constraint
solving. It first drops all inequality constraints with respect to ẑi,j in (43), i.e., for all i and j, the
following constraints are dropped

(2δi,j − 1)ẑi,j ≥ 0. (53)

https://github.com/vtjeng/MIPVerify.jl
https://github.com/vtjeng/MIPVerify.jl

algorithms for verifying deep neural networks 31

The above expression is a compact version of ẑi,j ≥ 0 for δi,j = 1 and ẑi,j ≤ 0 for δi,j = 0.
Without (53), the linear encoding reduces to the relaxed linear encoding in (44). The inequality
constraint with respect to ẑi,j is iteratively added, if the solution at the current iteration violates
(53) for any i and j.

Our implementation is shown in algorithm 6.10. For simplicity, we require that X is a
hyperrectangle and Y the complement of a polytope, PolytopeComplement. The solver first
computes the activation δi’s according to the reference input, i.e., the center of X . Then it
initializes neuron variables zi’s, adds the complement of the output constraint zn /∈ Y , and
adds an objective function for maximum allowable disturbance. We provide both the iterative
implementation and the non-iterative implementation to solve the LP problem, where the
iterative version corresponds to ILP.20 In the non-iterative approach, the solver simply encodes 20 It is claimed in [4] that the itera-

tive approach computes faster than
the non-iterative approach.

the network using the linear constraints in (43). In the iterative approach, the solver first encodes
the network using the relaxed linear constraints in (44) and solves the relaxed problem. If the
resulting solution violates any inequality constraint (53), we add the constraint to the problem
and solve the problem again. The process is repeated until all constraints (53) are satisfied. The
process is guaranteed to converge in a finite number of steps since there are only finitely many
constraints. The number of constraints equals the number of neurons.

7 Dual Optimization

Primal optimization needs to deal with complicated constraints. Another approach is to consider
the dual problem of (41), which can be relaxed to many independent optimization problems
[12], [43]. The objective considered in these methods is the violation of output constraints (50).
The dual problem provides a valid bound on the violation. In particular, Duality [12] uses
Lagrangian relaxation, which handles general activation functions such as ReLU, tanh, sigmoid,
maxpool, and etc. ConvDual [43] solves the dual problem of convexified (41), which handles
ReLU only. Certify [31] uses semidefinite relaxation, which handles networks with one hidden
layer, whose activation functions are differentiable almost everywhere.

7.1 Dual Network

This section introduces the concept of dual network, which is deeply related to the dual problem
of the optimization with respect to a neural network.21 The term ‘‘dual problem’’ refers to the 21 The dual network discussed here

is not the dual neural network
(DNN) [52], which is a recurrent
neural network (RNN) to solve
quadratic programming.

Lagrangian dual problem, which is obtained by forming the Lagrangian of the optimization,
using Lagrange multipliers to add the constraints to the objective function, and then solving
for some primal variable values that optimize the Lagrangian. This process will be discussed in
detail in section 7.2. The Lagrange multipliers are called dual variables. It will be shown that
those dual variables form a dual network, whose structure is similar to the original network but
which propagates in the opposite direction. Moreover, the dual variables encode the weights
of corresponding nodes in a value function in the context of dynamic programming, if we
regard the layer by layer propagation in a neural network as a dynamic system. In the following
discussion, we first introduce the dual network in the context of dynamic programming, then
point out its relationship with the Lagrangian dual problem.

Dynamic programming: General formulation Many algorithms optimize an objective function
that depends on non-input variables in the neural network, but constrained on the input x.

algorithms for verifying deep neural networks 32

struct ILP

optimizer

iterative::Bool

end

function solve(solver::ILP, problem::Problem)

nnet = problem.network

x = problem.input.center

model = Model(solver)

δ = get_activation(nnet, x)

neurons = init_neurons(model, nnet)

add_complementary_set_constraint!(model, problem.output, last(neurons))

o = max_disturbance!(model, first(neurons) - problem.input.center)

if !solver.iterative

encode_network!(model, nnet, neurons, δ, StandardLP())

optimize!(model)

if(termination_status(model) != OPTIMAL)

return AdversarialResult(:unknown)

end

return interpret_result(solver, value(o), problem.input)

end

encode_network!(model, nnet, neurons, δ, LinearRelaxedLP())

while true

optimize!(model)

if(termination_status(model) != OPTIMAL)

return AdversarialResult(:unknown)

end

x = value.(first(neurons))

matched, index = match_activation(nnet, x, δ)

if matched

return interpret_result(solver, value(o), problem.input)

end

add_constraint!(model, nnet, neurons, δ, index)

end

end

function interpret_result(solver::ILP, o, input)

if o >= maximum(input.radius)

return AdversarialResult(:holds, o)

else

return AdversarialResult(:violated, o)

end

end

function add_constraint!(model, network

z::Vector{Vector{VariableRef}},

δ::Vector{Vector{Bool}},

(i, j)::Tuple{Int64, Int64})

layer = network.layers[i]

val = layer.weights[j, :]' * z[i] + layer.bias[j]

if δ[i][j]

@constraint(model, val >= 0.0)

else

@constraint(model, val <= 0.0)

end

end

Algorithm 6.10. ILP. ILP com-
putes the maximum allowable
disturbance and returns adver-
sarial results. Both iterative and
non-iterative approaches are
provided. The iterative approach
first relaxes inequality constraints
in encode_network! using linear
relaxation, and then iteratively
adds those inequality constraints
in add_constraint!. The function
match_activation finds the node
that is violating the inequality
constraint equation (53). Its
implementation is not shown.

algorithms for verifying deep neural networks 33

There is a nonlinear relationship between the objective function and the input x. As feedforward
neural networks are considered, we can use dynamic programming to simplify the nonlinear
optimization problem and obtain the dual problem. Suppose the problem under consideration
is

max
x∈X

o ..=
n

∑
i=0

oi(ẑi), (54)

where oi is the objective for different layers.22 Define the value function at layer i as 22 The objective in (54) is nonlinear
and depends on hidden variables.
In most cases, the objective is linear
that only depends on the output
layer, e.g., o = cTẑn − d.

oi→n(ẑi)
..= max

ẑi+1,··· ,ẑn
∑
k≥i

ok(ẑk). (55)

The value function represents the optimal value that can be achieved given certain initial state
ẑi. Hence, the value function oi only has one variable ẑi. The Bellman equation for dynamic
programming can be written23 23 The Bellman equation is not in

its standard form in that the right-
hand-side does not involve any ac-
tual optimization. In conventional
dynamic programming, the rela-
tionship between ẑi and ẑi+1 is
non-deterministic. There should be
a ‘‘decision variable’’ that affects
the relationship, which can be op-
timized over. However, there is not
such a variable in a neural network.

oi→n(ẑi) = max
ẑi+1=Wi+1σi(ẑi)+bi+1

oi(ẑi) + o(i+1)→n(ẑi+1). (56)

The Bellman equation can be solved by backward dynamic programming. Then the original
optimization (54) is reduced to the following problem,

max
x∈X

o0→n(x), (57)

whose objective only depends on x.
This approach is widely used in discrete-time optimal control for dynamic systems where

ẑi are states at step i. In the following discussion, we derive the explicit solution for linear
objectives.

Figure 15. Illustration of dynamic
programming and the dual net-
work. Given an objective function
o that depends on the network out-
put, dynamic programming can
transform o to a function that only
depends on the network input. In
the process, a dual network is con-
structed. The dual network prop-
agates in the reverse order to the
original network. All correspond-
ing mappings are dual functions
of the mappings in the original net-
work. Moreover, the nodesνi in the
dual network encode the weights
of zi to the objective o. According
to the stationary condition in dy-
namic programming, all expres-
sions in the ‘‘objective’’ block are
equivalent to one another. Then the
objective function o that depends
on the output (shaded in green) is
transformed to a function that only
depends on the input (shaded in
yellow).

Dynamic programming: Linear objective Assume that oi(ẑi) = cTi ẑi − di where ci ∈ Rki and
di ∈ R. Define νi ∈ Rki to be the dual variable for ẑi, and ν̂i ∈ Rki to be the dual variable for zi.
The dual variables encode the weights of the corresponding nodes in a value function, i.e.,

oi→n(ẑi) = νTi ẑi + γi, (58)

algorithms for verifying deep neural networks 34

where γi ∈ R is a bias term. Consider on, we have the boundary constraint

νn = cn, γn = −di. (59)

Plugging (58) into the Bellman equation (56), we have

νTi ẑi + γi = cTi ẑi − di + νTi+1Wi+1σi(ẑi) + νTi+1bi+1 + γi+1. (60)

Matching the coefficient of ẑi and the constant term on both sides, we obtain the backward
relationship between νi, γi and νi+1, γi+1 as

νi = ci +σ∗
i (ν̂i), (61a)

ν̂i = WT
i+1νi+1, (61b)

γi = γi+1 + νTi+1bi+1 − di, (61c)

where σ∗
i is the dual function of σi, defined to satisfy24 24 To obtain an upper bound of

the primal problem (54), the dual
function only needs to satisfy
σ∗

i (ν̂i)
Tẑi ≥ ν̂Ti σi(ẑi).

σ∗
i (ν̂i)

Tẑi ≡ ν̂Ti σi(ẑi). (62)

In this way, the dual variables νi and ν̂i indeed form a backward dual network. Figure 15
illustrates the original network, the value function, and the dual network in the case that
oi = 0 for i < n. Hence, the original optimization problem (54) can be solved by 1) backward
computing the dual network from the boundary constraint at layer n to layer 0, 2) solving the
reduced problem (57) that depends on the dual variables.

When σi is nonlinear, the dual function σ∗
i is difficult to handle, as it indeed depends on

the value of ẑi. In the case of ReLU activation, different approximations of σi are introduced to
simplify the dual network. For example, ConvDual uses triangle relaxation and FastLin uses
parallel relaxation. These approaches are to be introduced in section 7.3 and section 8.2.

Dual network and Lagrange multipliers The dual variables for dynamic programming are deeply
related to Lagrange multipliers in Lagrangian dual problem. Let µi be the multiplier for the
constraint ẑi = Wizi−1 + bi and λi the multiplier for the constraint zi = σi(ẑi). Then the
Bellman equation (56) can be rewritten as25 25 The solution of the uncon-

strained problem mina maxb aTb
is always 0 with a = b = 0.
Hence, the optimal solution of the
Bellman equation (63) is always
µi+1 = ẑi+1 − Wi+1zi − bi+1 = 0
and λi = zi −σi(ẑi) = 0.

oi→n(ẑi) = min
µi+1,λi

max
ẑi+1,zi

oi(ẑi)+ o(i+1)→n(ẑi+1)+µTi+1 (ẑi+1 − Wi+1zi − bi+1)+λTi (zi −σi(ẑi)).

(63)
Using the linearity assumption o(i+1)→n(ẑi+1) = νTi+1ẑi+1 + γi+1 in the above equation, we

have

oi→n(ẑi) = o∗i + min
µi+1,λi

max
ẑi+1,zi

νTi+1ẑi+1 + µTi+1 (ẑi+1 − Wi+1zi − bi+1) + λTi (zi −σi(ẑi)), (64)

where o∗i = cTi ẑi − di + γi+1. Rearrange the minimax problem,

min
µi+1,λi

max
ẑi+1,zi

(νi+1 + µi+1)
Tẑi+1 + (λi − WT

i+1µi+1)
Tzi − µTi+1bi+1 − λTi σi(ẑi). (65)

By applying the result in footnote 25 to the first two terms in (65), we conclude that νi+1 +

µi+1 = 0 and λi − WT
i+1µi+1 = 0. Hence, we have the following relationship

µi+1 = −νi+1,λi = −ν̂i. (66)

The nodes in the dual network are indeed the Lagrange multipliers if we do not consider the
bounds on zi’s. Duality in section 7.2 provides a formulation that considers the bounds. In this
case, the conclusion from footnote 25 does not hold. As a result, the relationship between the
dual network and the Lagrange multipliers in (66) breaks.

algorithms for verifying deep neural networks 35

Dual network and backpropagation When the objectives for hidden layers are all zero, i.e., oi = 0
for all i < n, the dual variableνi is indeed the gradient from the objective o to the hidden variable
ẑi. The gradients are usually computed in backpropagation to train deep neural networks [15].

7.2 Duality

Duality [12] takes a hyperrectangle as its input set and has a half space as its output set. The
input hyperrectangle is denoted |x − x0| ≤ r, where x0 and r are the center and radius of the
hyperrectangle. The output half space is denoted cTy ≤ d. Then the optimization problem
becomes

max
z0,...,zn ,ẑ1,...,ẑn

cTzn − d, (67a)

s.t. zi = σi(ẑi), ∀i ∈ {1, . . . , n}, (67b)
ẑi = Wizi−1 + bi, ∀i ∈ {1, . . . , n}, (67c)
|z0 − x0| ≤ r. (67d)

Given the bounds on zi and ẑi, the optimal value of (67) is bounded by Lagrangian relaxation
of the constraints

max
z0,...,zn ,ẑ1,...,ẑn

cTzn − d +
n

∑
i=1

µTi (ẑi − Wizi−1 − bi) +
n

∑
i=1

λTi (zi −σi(ẑi)) , (68a)

s.t. `i ≤ zi ≤ ui, ∀i ∈ {1, . . . , n}, (68b)
ˆ̀ i ≤ ẑi ≤ ûi, ∀i ∈ {1, . . . , n}, (68c)
|z0 − x0| ≤ r, (68d)

where λi ∈ Rki and µ ∈ Rki are Lagrange multipliers. For any choice of λ and µ, (68) provides
a valid upper bound on the optimal value of (67). This property is known as weak duality.

Since the objective and constraints are separable in the layers, the variables in each layer can
be optimized independently. The boundary condition is λn = −c. The objective function in (68)
can be decomposed into the following three parts:

• Input layer value with respect to z0.

f0(µ1) = max
|z0−x0|≤r

−µT1 (W1z0 + b1) , (69a)

= −µT1 W1x0 − µT1 b1 +
∣∣∣µT1 W1

∣∣∣ r. (69b)

• Layer value with respect to zi. For i ∈ {1, . . . , n − 1},

fi(λi,µi+1) = max
`i≤zi≤ui

−µTi+1 (Wi+1zi + bi+1) + λTi zi, (70a)

=
(
λi − WT

i+1µi+1

)T `i + ui
2

− µTi+1bi+1 +
∣∣∣λi − WT

i+1µi+1

∣∣∣T ui − `i
2

. (70b)

• Activation value with respect to ẑi. For i ∈ {1, . . . , n},

f̃i(λi,µi) = max
ˆ̀ i≤ẑi≤ûi

µTi ẑi − λTi σi(ẑi), (71a)

≤ ∑
j

max{µi,j ˆ̀ i,j, µi,jûi,j}+ max{λi,jσi,j(ˆ̀ i,j), λi,jσi,j(ûi,j)}, (71b)

where the inequality is taken by considering element-wise maximum.

algorithms for verifying deep neural networks 36

Any choice of the dual variables λi,µi in (68) provides an upper bound of the primal problem
(67). To obtain a tight bound, we need to minimize (68) with respect to the dual variables. Hence,
the dual problem can be constructed as

min
λ1,...,λn ,µ1,...,µn

f0(µ1) +
n−1

∑
i=1

fi(λi,µi+1) +
n

∑
i=1

f̃i(λi,µi)− d, (72a)

s.t. λn = −c. (72b)

The problem is satisfied if the optimal solution of (72) is negative; otherwise, it is not satisfied.
Algorithm 7.1 provides an implementation.

7.3 ConvDual

ConvDual [43] takes a hypercube input set and a half space output set. The input hypercube is
denoted ‖x − x0‖∞ ≤ ε, where x0 and ε are the center and radius of the hypercube. The output
half space is denoted cTy ≤ d. ConvDual only considers ReLU networks. It first relaxes the
constraint using ∆-relaxation. The primal optimization becomes a convex problem:26 26 Convdual considers the pre-

activation bounds of the last layer,
which is equivalent to the case that
the activation in the last layer is
identity.

max
z0,...,zn ,ẑ1,...,ẑn

cTẑn − d, (73a)

s.t. zi,j = ẑi,j, ∀i ∈ {1, . . . , n − 1}, j ∈ Γ+
i , (73b)

zi,j = 0, ∀i ∈ {1, . . . , n − 1}, j ∈ Γ−
i , (73c)

zi,j ≥ ẑi,j, zi,j ≥ 0, zi,j ≤
ûi,j(ẑi,j − ˆ̀ i,j)

ûi,j − ˆ̀ i,j
, ∀i ∈ {1, . . . , n − 1}, j ∈ Γi, (73d)

ẑi = Wizi−1 + bi, ∀i ∈ {1, . . . , n}, (73e)
‖z0 − x0‖∞ ≤ ε. (73f)

The optimization (73) can be regarded as an n-step dynamic program. We derive the dual
problem and the dual network following the procedure of dynamic programming discussed in
section 7.1. The original paper [43] directly applies the dual problem formulation.

Recall that νi and ν̂i are the dual variables for ẑi and zi. The boundary condition is νn = c
and γn = −d. The Bellman equation (60) is reduced to

νTi ẑi + γi = ν̂Ti zi + νTi+1bi+1 + γi+1. (74)

To obtain the backward relationship between νi, γi and νi+1, γi+1 similar to (61), we consider
the following three cases. The sets Γ+

i , Γ−
i , and Γi encode activation conditions as defined in

(24).

• For active node j ∈ Γ+
i .

zi,j = ẑi,j. Hence, νi,j = ν̂i,j.

• For inactive node j ∈ Γ−
i .

zi,j = 0. Hence, νi,j = 0.

• For undetermined node j ∈ Γi. Consider the ∆-relaxation in (73d), the following conditions
are satisfied,

ν̂i,jzi,j ≤
ν̂i,jûi,j

ûi,j − ˆ̀ i,j
ẑi,j −

ν̂i,jûi,j ˆ̀ i,j

ûi,j − ˆ̀ i,j
for ν̂i,j ≥ 0, (75a)

ν̂i,jzi,j ≤ αi,jν̂i,j ẑi,j for ν̂i,j < 0, (75b)

algorithms for verifying deep neural networks 37

struct Duality

optimizer

end

function solve(solver::Duality, problem::Problem)

model = Model(solver)

c, d = tosimplehrep(problem.output)

λ = init_multipliers(model, problem.network)

μ = init_multipliers(model, problem.network)

o = dual_value(solver, problem, model, λ, μ)

@constraint(model, last(λ) .== -c)

optimize!(model)

return interpret_result(solver, termination_status(model), o - d[1])

end

function dual_value(solver::Duality, problem, model, λ, μ)

bounds, layers = get_bounds(problem), problem.network.layers

o = input_layer_value(layers[1], μ[1], bounds[1])

o += activation_value(layers[1], μ[1], λ[1], bounds[1])

for i in 2:length(layers)

o += layer_value(layers[i], μ[i], λ[i-1], bounds[i])

o += activation_value(layers[i], μ[i], λ[i], bounds[i])

end

@objective(model, Min, o)

return o

end

function activation_value(layer::Layer, μᵢ, λᵢ, bound)

o = zero(eltype(μᵢ))

b_hat = approximate_affine_map(layer, bound)

l_hat, u_hat = low(b_hat), high(b_hat)

l, u = layer.activation(l_hat), layer.activation(u_hat)

o += sum(symbolic_max.(μᵢ .* l_hat, μᵢ .* u_hat))

o += sum(symbolic_max.(λᵢ .* l, λᵢ .* u))

return o

end

function layer_value(layer::Layer, μᵢ, λᵢ, bound)

c, r = bound.center, bound.radius

o = λᵢ'*c - μᵢ'*affine_map(layer, c)

o += sum(symbolic_abs.(λᵢ .- layer.weights'*μᵢ) .* r)

return o

end

function input_layer_value(layer::Layer, μᵢ, input)

W = layer.weights

c, r = input.center, input.radius

o = -μᵢ' * affine_map(layer, c)

o += sum(symbolic_abs.(μᵢ'*W) .* r)

return o

end

Algorithm 7.1. Duality. Lagrangian
relaxation is considered in Dual-
ity. The variables to be optimized
are the Lagrange multipliers. The
dual value is computed layer-wise.
The function input_layer_value

corresponds to equation (69). The
function layer_value corresponds
to equation (70). The function
activation_value corresponds to
equation (71). Duality returns ba-
sic satisfiability results.

algorithms for verifying deep neural networks 38

where αi,j ∈ [0, 1]. (75) implies the following condition:

ν̂i,jzi,j ≤
ûi,j

ûi,j − ˆ̀ i,j
[ν̂i,j]+ ẑi,j + αi,j[ν̂i,j]− ẑi,j −

ûi,j ˆ̀ i,j

ûi,j − ˆ̀ i,j
[ν̂i,j]+. (76)

Hence, the relationship among the dual variables that maximizes the value is

γi = νTi+1bi+1 + γi+1 − ∑
j∈Γi

ûi,j ˆ̀ i,j

ûi,j − ˆ̀ i,j
[ν̂i,j]+, (77a)

νi,j =


ν̂i,j j ∈ Γ+

i
0 j ∈ Γ−

i
ûi,j

ûi,j− ˆ̀ i,j

[
ν̂i,j
]
+
+ αi,j[ν̂i,j]− j ∈ Γi

, (77b)

for i ∈ {1, . . . , n − 1}. Note that when j ∈ Γi and νi,j > 0, νi,j =
ûi,j

ûi,j− ˆ̀ i,j

[
ν̂i,j
]
+

. Then the term
ûi,j ˆ̀ i,j

ûi,j− ˆ̀ i,j
[ν̂i,j]+ can be simplified as ˆ̀ i,j

[
νi,j
]
+

.

Then optimizing νT
n ẑn + γn is equivalent to optimizing νT

1 ẑ1 + γ1 = ν̂T
0 z0 + νT1 b1 + γ1.

Hence,

max
‖z0−x0‖∞≤ε

ν̂T
0 z0 + νT1 b1 + γ1, (78a)

= ν̂T
0 x0 + ε‖ν̂0‖1 +

n

∑
i=1

νTi bi −
n−1

∑
i=1

∑
j∈Γi

ˆ̀ i,j[νi,j]+ − d︸ ︷︷ ︸
νT

1 b1+γ1

, (78b)

where γ1 is computed according to (77a).
Then the dual problem of (73) is

min
αi,j∈[0,1]

ν̂T
0 x0 + ε‖ν̂0‖1 +

n

∑
i=1

νTi bi −
n−1

∑
i=1

∑
j∈Γi

ˆ̀ i,j[νi,j]+ − d, (79a)

s.t. νn = c, (79b)
ν̂i = WT

i+1νi+1, ∀i ∈ {0, . . . , n − 1}, (79c)

νi,j =


0 j ∈ Γ−

i
ν̂i,j j ∈ Γ+

i
ûi,j

ûi,j− ˆ̀ i,j

[
ν̂i,j
]
+
+ αi,j[ν̂i,j]− j ∈ Γi

∀i ∈ {1, . . . , n − 1}. (79d)

The optimal solution of (79) provides an upper bound of the primal problem (73). If the
dual value is smaller than 0, then the problem is satisfiable. The dual network consists of νi’s
and is almost identical to the back-propagation network. The difference is that for nodes j ∈ Ii,
there is the additional free variable αi,j that we can optimize over. One fixed and dual feasible
solution of (79) is

αi,j =
ûi,j

ûi,j − ˆ̀ i,j
. (80)

Under the condition, the dual network is linear. We will show in section 8.2 that the resulting
dual network is identical to the case where we use parallel relaxation instead of ∆ relaxation.

algorithms for verifying deep neural networks 39

Our implementation is in algorithm 7.2. The value is computed in dual_value. The dual
network is computed in backprop! layer by layer. For simplicity, we directly use (80) in the
implementation. The bounds ˆ̀ i,j and ûi,j and the sets Γi, Γ−

i , and Γ+
i can be computed using

different methods, e.g., interval arithmetic introduced in section 4.1 and section 5.4. The original
paper computes the bounds by formulating the bounding problem as several optimization
problems similar to (73). The objectives are min zi,j and max zi,j for all i and j. Those problems can
also be solved by dynamic programming. Moreover, the bounds can be computed inductively
layer by layer. The details of the computation will be discussed in FastLin in section 8.2.

7.4 Certify

Certify [31] computes over-approximated certificates for a neural network with only one hidden
layer. Similar to ConvDual, Certify also takes a hypercube input set ‖x − x0‖∞ ≤ ε and a
half space output set cTy ≤ d. It works for any activation function as long as the function is
differentiable almost everywhere and its gradient is bounded. For simplicity, we assume that
the derivative of the activation function is bounded by 0 and 1, i.e., σ′(ẑ) ∈ [0, 1] for any ẑ. If
not, we can always scale it by a factor maxẑ σ′(ẑ) and add the factor in the following derivation.
The primal optimization problem considered in Certify is

max
‖x−x0‖∞≤ε

o(x) = cTf(x)− d. (81)

Since o is differentiable almost-everywhere, then

o(x) ≤ o(x0) + ε max
‖x−x0‖∞≤ε

‖∇o(x)‖1. (82)

For a neural network with only one hidden layer, o(x) = ∑j cjσ1,j(w1,jx + b1,j). For simplicity,
we omit the first index (index for layer 1) in σ, w and b. Then

∇o(x) = ∑
j

cjσ
′
j (wjx + bj)wT

j = WTdiag(c)∇σ(Wx + b), (83)

where ∇σ ∈ [0, 1]k1 is the vertical stack of σ′
j . Let s = σ′(Wx + b). Then

‖∇o(x)‖1 ≤ max
s∈[0,1]k1 ,t∈[−1,1]k0

tTWTdiag(c)s, (84a)

= max
s∈[−1,1]k1 ,t∈[−1,1]k0

1
2

tTWTdiag(c) (1 + s) , (84b)

= max
p∈[−1,1]1+k1+k0

1
4

pT

 0 0 1TWTdiag(c)
0 0 WTdiag(c)

diag(c)W1 diag(c)W 0


︸ ︷︷ ︸

M(c,W)

p, (84c)

= max
p∈[−1,1]1+k1+k0

1
4
〈M(c, W), ppT〉, (84d)

≤ max
P�0,Pjj≤1

1
4
〈M(c, W), P〉. (84e)

algorithms for verifying deep neural networks 40

struct ConvDual end

function solve(solver::ConvDual, problem::Problem)

o = dual_value(solver, problem.network, problem.input, problem.output)

if o >= 0.0

return BasicResult(:holds)

end

return BasicResult(:unknown)

end

function dual_value(solver::ConvDual, network, input, output)

layers = network.layers

L, U = get_bounds(network, input.center, input.radius[1])

v0, d = tosimplehrep(output)

v = vec(v0)

o = d[1]

for i in reverse(1:length(layers))

o -= v'*layers[i].bias

v = layers[i].weights'*v

if i>1

o += backprop!(v, U[i-1], L[i-1])

end

end

o -= input.center' * v + input.radius[1] * sum(abs.(v))

return o

end

function backprop!(v::Vector{Float64}, u::Vector{Float64}, l::Vector{Float64})

o = 0.0

for j in 1:length(v)

val = relaxed_ReLU(l[j], u[j])

if val < 1.0

v[j] = v[j] * val

o += v[j] * l[j]

end

end

return o

end

function relaxed_ReLU(l::Float64, u::Float64)

u <= 0.0 && return 0.0

l >= 0.0 && return 1.0

return u / (u - l)

end

Algorithm 7.2. ConvDual. The
dual problem of the verification
problem is considered. ∆ relax-
ation is applied. The dual prob-
lem is formulated by backward dy-
namic programing. The function
dual_value explicitly computes the
dual value equation (79) under the
relaxation equation (80).

algorithms for verifying deep neural networks 41

The inequality in (84a) is due to ‖q‖1 ≤ max‖p‖∞≤1 pTq. (84b) changes the range of s. (84c)
packs all variables into one vector p ..= [1, t, s] and packs all parameters into the matrix M(c, W).
(84d) exploits the equivalence between matrix trace and quadratic form. The inner product
between two matrices is defined as 〈M, P〉 ..= tr(MTP). (84e) is obtained by taking P ..= pp.
The matrix P is positive semidefinite, i.e., PT � 0. Moreover, the diagonal term Pjj = p2

j ≤ 1 for
j ∈ {1, . . . , 1 + k0 + k1}. Hence, the convex semidefinite relaxation of the value o(x) is

max
‖x−x0‖∞≤ε

o(x) ≤ o(x0) +
ε

4
max

P�0,Pjj≤1
〈M(c, W), P〉. (85)

The right-hand side of (85) provides an upper bound of (81). If the bound is smaller than
zero, then the problem is satisfiable. It is worth noting that the semidefinite program (the max
function) only depends on c and W. As it does not depend on the input x, it only needs to be
computed once for a problem.

Our implementation is shown in algorithm 7.3, which directly constructs and solves the
semidefinite program in (85).

struct Certify

optimizer

end

function solve(solver::Certify, problem::Problem)

model = Model(solver)

c, d = tosimplehrep(problem.output)

v = c * problem.network.layers[2].weights

W = problem.network.layers[1].weights

M = getM(v[1, :], W)

n = size(M, 1)

P = @variable(model, [1:n, 1:n], PSD)

output = c * compute_output(problem.network, problem.input.center) .- d[1]

epsilon = problem.input.radius[1]

o = output .+ epsilon/4 * tr(M*P)

@constraint(model, diag(P) .<= ones(n))

@objective(model, Max, first(o))

optimize!(model)

return interpret_result(solver, termination_status(model), first(o))

end

Algorithm 7.3. Certify. It solves
the semidefinite program equa-
tion (85).

8 Search and Reachability

This section discusses methods that combine layer-by-layer reachability analysis with search.
ReluVal [40] uses symbolic intervals for reachability analysis and then searches the input
domain for potential violations using iterative interval refinement. FastLin [41] uses network
approximation for reachability analysis and then uses binary search to estimate a certified lower
bound of maximum allowable disturbance. FastLip [41] is built upon FastLin, which further
estimates the local Lipschitz constant. DLV [18] performs layer-by-layer search in hidden layers
for potential counter examples. Note that the return types of these methods are not necessarily
reachability results.

algorithms for verifying deep neural networks 42

8.1 ReluVal

ReluVal [40] takes a hyperrectangle input set |x − x0| ≤ r and any output set that implements
the abstract polytope type. The reachability analysis is done symbolically, while the search is
done through iterative interval refinement. Our implementation is shown in algorithms 8.1
to 8.3.

struct SymbolicInterval

Low::Matrix{Float64}

Up::Matrix{Float64}

interval::Hyperrectangle

end

struct SymbolicIntervalMask

sym::SymbolicInterval

LΛ::Vector{Vector{Int64}}

UΛ::Vector{Vector{Int64}}

end

Algorithm 8.1. The data structure
in ReluVal. SymbolicInterval

represents the symbolic inter-
val defined in equation (86).
SymbolicIntervalMask further
includes the lower and upper
bounds of ∇σi , i.e., diagonal
entries of the gradient bounds Λi
and Λi introduced in section 4.3.

Symbolic interval propagation Reachability methods that use interval arithmetic usually provide
very loose bounds, as they do not keep track of dependencies among the hidden nodes. Symbolic
interval propagation can provide tighter bounds by keeping track of those dependancies layer
by layer. Define the extended input as xe ..= [x, 1]. Then a symbolic interval at layer i is defined
as

zi ∈ [Lixe, Uixe] , for x ∈ [x0 − r, x0 + r], (86)

where Li, Ui ∈ Rki×(k0+1) are coefficients in the symbolic interval. For example, the jth node at
layer i is bounded by

`i,jxe ≤ zi,j ≤ ui,jxe, (87)

where `i,j and ui,j are the jth row in Li and Ui respectively.
The data structure SymbolicInterval in algorithm 8.1 is introduced to keep track of symbolic

intervals, where the field Low corresponds to Le
i , Up to Ue

i , and interval to the hyperrectangle
[x0 − r, x0 + r].

Given the symbolic interval, Lixe belongs to a hyperrectangle that centers at Li[x0, 1] with
radius |Li|[r, 0], where |Li| is a matrix containing the element-wise absolute values of Li. Sim-
ilarly, Uixe belongs to a hyperrectangle that centers at Ui[x0, 1] with radius |Ui|[r, 0]. Let axe

be a symbolic representation for a scalar variable, where a ∈ Rk0+1. Let h, h : Rk0+1 → R be
functions that map the symbolic representation axe to its concrete lower bound and upper
bound respectively, such that

h(a) ..= a[x0, 1]− |a|[r, 0], (88a)
h(a) ..= a[x0, 1] + |a|[r, 0]. (88b)

The symbolic intervals are computed layer by layer by calling forward_network in algorithm 5.1.
The function forward_layer is shown in algorithm 8.2, which consists of the following two
steps:

algorithms for verifying deep neural networks 43

• Symbolic interval propagation through the linear map ẑi = Wizi−1 + bi for i ∈ {2, . . . , n}.

L̂i = [Wi]+Li−1 + [Wi]−Ui−1 + [0 bi], (89a)
Ûi = [Wi]+Ui−1 + [Wi]−Li−1 + [0 bi]. (89b)

For the first layer, the symbolic bounds are defined as horizontal concatenation of W1 and
b1,

L̂1 = Û1 = [W1 b1]. (90)

This corresponds to forward_linear in algorithm 8.2.

• Symbolic interval propagation through ReLU activation function zi = [ẑi]+. For each node
j, there are three possibilities: always active (j ∈ Γ+

i), never active (j ∈ Γ−
i), undetermined

(j ∈ Γi). Similar to (24), we have

Γ+
i = {j : h(ˆ̀ i,j) ≥ 0}, (91a)

Γ−
i = {j : h(ûi,j) ≤ 0}, (91b)
Γi = {j : j /∈ Γ+

i ∪ Γ−
i }. (91c)

Then the symbolic interval for node j is computed as

j ∈ Γ+
i ⇒ `i,j = ˆ̀ i,j, ui,j = ûi,j, (92a)

j ∈ Γ−
i ⇒ `i,j = ui,j = 0, (92b)

j ∈ Γi ⇒ `i,j = 0, ui,j =

{
ûi,j h(ûi,j) ≥ 0[
0 h(ûi,j)

]
h(ûi,j) < 0

. (92c)

When the node is always active in (92a), we keep the symbolic dependency on the input
variables. When the node is never active in (92b), all outputs should be 0. When the activation
is undetermined in (92c), the lower bound is set to 0. If it is possible for the symbolic upper
bound to be smaller than 0, the input dependencies will be thrown away. The upper bound
is set to be its concrete maximum, i.e., the first k0 entries in ui,j are set to zero. Otherwise, we
keep the symbolic dependency of the upper bound on input variables.

This corresponds to forward_act in algorithm 8.2.

Given the symbolic interval propagation, the output reachable set is a hyper-rectangle such
that

R̃ = {y : yj ∈ [h(`n,j), h(un,j)], ∀j = 1, . . . , kn}. (93)

The output reachable set computed by symbolic interval propagation is tighter than simple
interval arithmetic as illustrated in figure 7.

Given the reachable set R̃, its relationship with respect to the output set Y is examined in
the function check_inclusion in algorithm 8.3, which may return the following four different
results:

• The return status is :holds if R̃ ⊂ Y .

• The return status is :violated if R̃⋂Y = ∅.

• In addition, we sample the input interval to check for counter examples.27 If the output
27 Heuristically, only the middle
point of the input interval is
checked in both the original im-
plementation and our implemen-
tation.

with respect to any sample point does not belong to Y , the sample point is returned as an
unsatisfied CounterExampleResult.

algorithms for verifying deep neural networks 44

• Otherwise, the return status is :Undetermined.

If the status is undetermined, ReluVal performs iterative interval refinement to minimize
over-approximation in R̃.

Iterative interval refinement Although symbolic interval propagation can provide us with tighter
bounds than simple interval arithmetic, it may still have significant over-approximation, espe-
cially when the input intervals are comparably large. Recall that MaxSens partitions the input
intervals into smaller sets to minimize over approximations. ReluVal performs iterative interval
refinement instead, which splits the intervals of input nodes according to their influence on the
output.28 28 The ReluVal paper discusses two

approaches: baseline iterative re-
finement and optimizing iterative
refinement. We consider optimiz-
ing iterative refinement.

We evaluate the influence by considering the bounds on gradients Gn and Gn defined
in section 4, which essentially measure the sensitivity of the output with respect to each
input feature. The bounds Gn and Gn can be obtained by calling the third get_gradient in
algorithm 4.3. The bounds Λi and Λi on ∇σi are computed in the forward propagation, and
recorded in the data structure SymbolicIntervalMask in algorithm 8.1.

For each refinement step, ReluVal bisects the interval for input node j that has the highest
smear value

Sj
..= ∑

k
max{|UGn,j,k|, |LGn,j,k|}rk, (94)

where UGn,j,k and LGn,j,k are the jth row and kth column entries in Gn and Gn, respectively. Let
j∗ = arg maxj Sj. The smear values are computed in get_smear_index in algorithm 8.3, which
returns the index to split. The split is performed by interval_split in algorithm 4.2.

The main procedure is shown in algorithm 8.3 and illustrated in figure 16. We first compute
the reachable set without splitting the interval. If the status of the reachability analysis is unde-
termined, iterative interval refinement will be performed. A list of reachable sets is maintained.
The reachable sets correspond to different input intervals. At each iteration, a set in the list
is picked out according to the tree search strategy specified by the solver (default depth first
search). For the picked set, the bounds of its gradient are computed. Then it is split into two
intervals according to the smear values. The reachable sets for the two smaller intervals are
then computed. If a reachable set belongs to the output constraint, we drop the corresponding
interval. If a counter example is found in an interval, we conclude that the problem is violated.
Otherwise, we need to further split the interval whose reachable set is then pushed back to the
list. If the list becomes empty, the property is verified to be hold.

8.2 FastLin

FastLin [41] computes the certified lower bound of the maximum allowable disturbance.29 The 29 An earlier work [42] called
CLEVER also estimates the lower
bound. However, CLEVER is not
sound, hence, is not reviewed here.

method combines reachability analysis with binary search to estimate the bound, and returns
an adversarial result. FastLin only works for ReLU activation functions. A general method that
works for any activation function, called CROWN, is discussed in [51], but is not reviewed here.

The binary search procedure shown in the main function in algorithm 8.5 can be combined
with any reachability method. In particular, FastLin computes the bounds based on linear
approximation of the neurons. The method takes a hyperrectangle as input set and a polytope
or the complement of a polytope as output set.

algorithms for verifying deep neural networks 45

function forward_layer(solver::ReluVal, layer::Layer, input)

return forward_act(forward_linear(input, layer))

end

function forward_linear(input::Hyperrectangle, layer::Layer)

(W, b) = (layer.weights, layer.bias)

sym = SymbolicInterval(hcat(W, b), hcat(W, b), input)

LΛ = Vector{Vector{Int64}}(undef, 0)

UΛ = Vector{Vector{Int64}}(undef, 0)

return SymbolicIntervalMask(sym, LΛ, UΛ)

end

function forward_linear(input::SymbolicIntervalMask, layer::Layer)

(W, b) = (layer.weights, layer.bias)

output_Up = max.(W, 0) * input.sym.Up + min.(W, 0) * input.sym.Low

output_Low = max.(W, 0) * input.sym.Low + min.(W, 0) * input.sym.Up

output_Up[:, end] += b

output_Low[:, end] += b

sym = SymbolicInterval(output_Low, output_Up, input.sym.interval)

return SymbolicIntervalMask(sym, input.LΛ, input.UΛ)

end

function forward_act(input::SymbolicIntervalMask, layer::Layer{ReLU})

n_node, n_input = size(input.sym.Up)

output_Low, output_Up = input.sym.Low[:, :], input.sym.Up[:, :]

mask_lower, mask_upper = zeros(Int, n_node), ones(Int, n_node)

interval = input.sym.interval

for i in 1:n_node

if upper_bound(input.sym.Up[i, :], interval) <= 0.0

mask_lower[i], mask_upper[i] = 0, 0

output_Up[i, :] = zeros(n_input)

output_Low[i, :] = zeros(n_input)

elseif lower_bound(input.sym.Low[i, :], interval) >= 0

mask_lower[i], mask_upper[i] = 1, 1

else

mask_lower[i], mask_upper[i] = 0, 1

output_Low[i, :] = zeros(n_input)

if lower_bound(input.sym.Up[i, :], interval) < 0

output_Up[i, :] = zeros(n_input)

output_Up[i, end] = upper_bound(input.sym.Up[i, :], interval)

end

end

end

sym = SymbolicInterval(output_Low, output_Up, interval)

LΛ = push!(input.LΛ, mask_lower)

UΛ = push!(input.UΛ, mask_upper)

return SymbolicIntervalMask(sym, LΛ, UΛ)

end

Algorithm 8.2. Symbolic in-
terval propagation in ReluVal.
The function forward_layer is
called by forward_network in the
layer-by-layer propagation. The
function forward_layer consists
of forward_linear for the linear
mapping and forward_act for
the nonlinear activation. The first
forward_linear function is for
the input layer, while the second
forward_linear function is for
the following layers. Except for
the first layer, the data structure
being passed through layers is
SymbolicIntervalMask.

algorithms for verifying deep neural networks 46

(a)

(b)

Figure 16. Illustration of iterative
interval refinement. The two sub-
figures illustrate two search trees
in two different scenarios. Each
node in the search tree consists
of two boxes connected by an ar-
row. The left box corresponds to
the input space and the right box
corresponds to the output space.
The input constraint and the out-
put constraint are shaded in corre-
sponding spaces. The dashed box
in the input space represents the
refined interval, while the dashed
box in the output space represents
the reachable set for that interval. If
the reachable set belongs toY , then
the status is holds. If the reachable
set overlaps with Y but is not a sub-
set of Y , the status is unknown. In
this case, a point is sampled in the
input space (black dot). If the out-
put of that sample point does not
belong to Y , the status is violated.
Otherwise, the interval is split into
two. (a) Scenario 1: property holds
as the reachable sets all belong to
Y . (b) Scenario 2: property violated
as a counter example is found.

algorithms for verifying deep neural networks 47

struct ReluVal

tree_search::Symbol

end

function solve(solver::ReluVal, problem::Problem)

reach = forward_network(solver, problem.network, problem.input)

result = check_inclusion(reach.sym, problem.output, problem.network)

result.status == :Unknown || return result

reach_list = SymbolicIntervalMask[reach]

while true

length(reach_list) > 0 || return BasicResult(:holds)

reach = pick_out!(reach_list, solver.tree_search)

LG, UG = get_gradient(problem.network, reach.LΛ, reach.UΛ)

feature = get_smear_index(problem.network, reach.sym.interval, LG, UG)

intervals = split_interval(reach.sym.interval, feature)

for interval in intervals

reach = forward_network(solver, problem.network, interval)

result = check_inclusion(reach.sym, problem.output, problem.network)

result.status == :violated && return result

result.status == :holds || (push!(reach_list, reach))

end

end

end

function check_inclusion(reach::SymbolicInterval, output, network)

reachable = symbol_to_concrete(reach)

issubset(reachable, output) && return BasicResult(:holds)

middle_point = (high(reach.interval) + low(reach.interval))./2

y = compute_output(network, middle_point)

∈(y, output) || return CounterExampleResult(:violated, middle_point)

return BasicResult(:Unknown)

end

Algorithm 8.3. The main function
in ReluVal. The reachable set for a
given input interval is computed
by calling forward_network, which
then calls forward_layer. In order
to perform iterative interval
refinement, the solve function
keeps track of a list of reachable
sets that correspond to different
input intervals. At each iteration,
a set in the list is picked out
according to the tree search
strategy specified by the solver
by pick_out!. For the picked set,
the bounds of its gradient are
computed by get_gradient. Then
the index to be split is determined
by get_smear_index. The interval
is split into two by split_interval.
The reachable sets for the two
smaller intervals are then com-
puted. The check_inclusion

checks the status of each reachable
set. If a counter example is found,
the result is directly returned. If
the status is unknown, we need
to further split the input interval.
The corresponding reachable set
is pushed back to the list. If the
list becomes empty, the problem is
verified.

algorithms for verifying deep neural networks 48

Reachability via network relaxation Given the bounds from interval arithmetic, a ReLU node that
has an undetermined activation can be approximated using parallel relaxation.30 Given the 30 Parallel relaxation is looser than

∆-relaxation.bounds `i and ui for i ≤ k, the bounds ˆ̀ k+1 and ûk+1 can be computed by directly optimizing the
node values. Similar to the derivation in ConvDual, we derive the lower and upper bounds using
backward dynamic programming.31 The optimization and dynamic programming approach 31 The FastLin paper provides a dif-

ferent derivation.will provide tighter bounds than interval arithmetic discussed in section 4.1, since the correlation
among nodes in the hidden layers is considered in the optimization problem, but not in interval
arithmetic algorithms.

The bounds are initiated as `0 = x0 − ε1 and u0 = x0 + ε1. Given the bounds `i and ui for
i ≤ k, we show the derivation for `k+1 and uk+1. For simplicity and without loss of generality,
we assume that the k + 1th layer only contains one node. The derivation below can be easily
extended to the case with multiple nodes. The lower and upper bounds of node ẑk+1 are given
by

ˆ̀k+1 = min
‖x−x0‖≤ε

ẑk+1, ûk+1 = max
‖x−x0‖≤ε

ẑk+1. (95)

For simplicity, we only show the detailed derivation of ûk+1. Recall thatνi and ν̂i = Wi+1νi+1

are the dual variables for ẑi and zi, and γi is the bias in the value function. The boundary
conditions are νk+1 = 1 and γk+1 = 0. Then the equation in (74) follows. The sets Γ+

i , Γ−
i , and

Γi for i ≤ k can be constructed using the known bounds according to (24). For j ∈ Γ+
i , νi,j = ν̂i,j.

For Γ−
i , νi,j = 0. These two cases are identical to the cases in ConvDual in section 7.3. For j ∈ Γi,

consider the parallel relaxation (47) instead of ∆-relaxation, we have

ν̂i,jzi,j ≤
ν̂i,jûi,j

ûi,j − ˆ̀ i,j
ẑi,j −

ν̂i,jûi,j ˆ̀ i,j

ûi,j − ˆ̀ i,j
for ν̂i,j ≥ 0, (96a)

ν̂i,jzi,j ≤
ν̂i,jûi,j

ûi,j − ˆ̀ i,j
ẑi,j for ν̂i,j < 0, (96b)

which is different from (75) in that there is no degree of freedom for a slack variable α. In this
way, the relationship among the dual variables that maximizes the value is that for i ∈ {1, . . . , k},

γi = νTi+1bi+1 + γi+1 − ∑
j∈Γi

ˆ̀ i,j
[
νi,j
]
+

, (97a)

νi,j =


ν̂i,j j ∈ Γ+

i
0 j ∈ Γ−

i
ûi,j

ûi,j− ˆ̀ i,j
ν̂i,j j ∈ Γi

. (97b)

The resulting dual network defined by νi,j’s is identical to the dual network in ConvDual
when αi,j is chosen according to (80). For simplification, define a diagonal matrix Di ∈ Rki×ki

whose diagonal entries di,j,j for all j satisfy

di,j,j =


1 j ∈ Γ+

i
0 j ∈ Γ−

i
ûi,j

ûi,j− ˆ̀ i,j
j ∈ Γi

. (98)

Then the dual network satisfies

νi = DiWT
i+1νi+1, ∀i ≤ k. (99)

algorithms for verifying deep neural networks 49

The dual variables provide an upper bound of ẑk+1 such that ẑk+1 ≤ νT
1 ẑ1 + γ1 = ν̂T

0 x +

νT1 b1 + γ1 where x satisfies the `p bounds ‖x − x0‖p ≤ ε. According to (97a) and the boundary
condition γk+1 = 0,

νT1 b1 + γ1 =
n

∑
i=1

νTi bi −
n−1

∑
i=1

∑
j∈Γi

ˆ̀ i,j[νi,j]+ =: µ+. (100)

Hence, the upper bound of ẑk+1 is

ûk+1
..= max

‖x−x0‖p≤ε
ν̂T0 x + µ+ = ν̂T0 x0 + ε‖ν̂0‖q + µ+, (101)

where q is the dual variable for p, i.e., p−1 + q−1 = 1. Our implementation only considers the
case where p = ∞ and q = 1.

Similarly, the lower bound of ẑk+1 can be computed as

ˆ̀k+1
..= min

‖x−x0‖p≤ε
ν̂T0 x + µ− = ν̂T0 x0 − ε‖ν̂0‖q + µ−, (102)

where

µ− =
n

∑
i=1

νTi bi −
n−1

∑
i=1

∑
j∈Γi

ˆ̀ i,j[νi,j]−. (103)

We are using the same dual network for both the upper bound and the lower bound.
The above process should be performed iteratively from k = 0 to k = n − 1. If there are

multiple nodes in layer k + 1, we need to combine all dual variables together. Denote the
variables in the dual network and the value function for the jth node in layer k + 1 as ν

k+1,j
i

and γ
k+1,j
i for i ≤ k + 1. The derivation of νk+1,j

i and γ
k+1,j
i follows the discussion above, except

for the boundary conditions. The boundary condition for the dual network is now ν
k+1,j
k+1 =

[0, . . . , 0, 1, 0, . . . , 0] where the value is 1 for the jth entry and 0 otherwise. When we optimize
the value for the jthe node, the objective is (νk+1,j

k+1)Tzk+1. The boundary condition for the bias
is kept unchanged γ

k+1,j
k+1 = 0. Define a vector γk+1

i
..= [γk+1,1

i , . . . , γ
k+1,kk+1
i] ∈ Rkk+1 . Define a

matrix Vk+1
i ∈ Rki×kk+1 to be the horizontal concatenation of νk+1,j

i for all j ∈ {1, . . . , kk+1}, i.e.,

Vk+1
i = [νk+1,1

i νk+1,2
i · · · νk+1,k+1

i]. (104)

The matrices Vk+1
i for all i ≤ k + 1 also have a network structure. According to (99), the network

structure can be described by

Vk+1
i = DiWT

i+1Vk+1
i+1 , ∀i ≤ k, (105)

with boundary condition
Vk+1

k+1 = I. (106)

Following (101) and (102), the upper and lower bounds for ẑk+1 can be computed as

ûk+1 = (Vk+1
1)TW1x0 + ε‖(Vk+1

1)TW1‖q +
n

∑
i=1

(Vk+1
i)Tbi −

n−1

∑
i=1

[(Vk+1
i)]T+D∗

i
ˆ̀ i, (107a)

ˆ̀ k+1 = (Vk+1
1)TW1x0 − ε‖(Vk+1

1)TW1‖q +
n

∑
i=1

(Vk+1
i)Tbi −

n−1

∑
i=1

[(Vk+1
i)]T−D∗

i
ˆ̀ i, (107b)

where D∗
i is a diagonal matrix whose jth diagonal entry is 1 for j ∈ Γi and 0 otherwise. The q

norm is taken row-wise, i.e., ‖(Vk+1
1)TW1‖q

..= [‖(νk+1,
1)TW1‖q, . . . , ‖(νk+1

1)TW1‖q].

algorithms for verifying deep neural networks 50

Relationships among dual networks For every k, we indeed have a dual network of k hidden
layers. The dual variables in the dual network are related. The correlations are derived below.
Note that Vk+1

i = DiWT
i+1Vk+1

i+1 = DiWT
i+1Di+1WT

i+2 · · ·DkWT
k+1. And Vk

i = DiWT
i+1Vk

i+1 =

DiWT
i+1Di+1WT

i+2 · · ·Dk−1WT
k . Hence,

Vk+1
i = Vk

i DkWT
k+1. (108)

The relationships among all Vk
i ’s are shown below.

Vn
n

↓ Dn−1WT
n ·

Vn−1
n−1

·Dn−1WT
n−−−−−→ Vn

n−1
...

...
...

...

V3
3 · · · · · · Vn−1

3
·Dn−1WT

n−−−−−→ Vn
3

↓ D2WT
3 · ↓ D2W3 ↓ D2WT

3 ·

V2
2

·D2WT
3−−−−→ V3

2 · · · · · · Vn−1
2

·Dn−1WT
n−−−−−→ Vn

2
↓ D1WT

2 · ↓ D1WT
2 · ↓ D1WT

2 · ↓ D1WT
2 ·

V1
1

·D1WT
2−−−−→ V2

1
·D2WT

3−−−−→ V3
1 · · · · · · Vn−1

1
·Dn−1WT

n−−−−−→ Vn
1 .

(109)
There are two approaches to compute Vk

i for different i and k.

1. To compute the dual network from scratch for every k.

2. To compute the dual network for k + 1 by reusing the dual network from the last k following
(108).

The first approach is used in the original implementation in FastLin. The second approach is
used in the original implementation in ConvDual. The second approach is more computationally
efficient, and is shown in algorithm 8.4.

Figure 17. Illustration of the bi-
nary search in FastLin. The upper
plot shows three different input
sets with radius ε1, ε2, and ε3. The
lower plot shows the output con-
straint Y (gray area), and the out-
put reachable sets that correspond
to the three input sets. The first
reachable set R(ε1) does not be-
long to Y . Then a smaller radius ε2
is chosen. The resulting reachable
set R(ε2) is a subset of Y . Then a
larger radius ε3 ∈ (ε2, ε1) is cho-
sen. This process is repeated.

Binary search The binary search process of the allowable disturbance ε is illustrated in figure 17.
We keep track of lower and upper bounds of ε, denoted ε and ε. The output reachable set for
input set with radius ε is denoted R(ε), which satisfies the bounds computed in (107). The
variables ε and ε need to satisfy that

R(ε) ⊆ Y ,R(ε) 6⊆ Y . (110)

At every search step, the reachable set R(ε) for ε ..= ε+ε
2 is computed. There are two possibilities.

• If R(ε) ⊆ Y , then ε is updated to be ε.

• If R(ε) 6⊆ Y , then ε is updated to be ε.

The search process can be terminated if either the maximum iteration is reached or the bounds
are close enough to each other, i.e., ε − ε is small. The binary search is implemented in the main
loop in algorithm 8.5.

algorithms for verifying deep neural networks 51

function get_bounds(nnet::Network, input::Vector{Float64}, ϵ::Float64)

layers = nnet.layers

n_layer = length(layers)

l = Vector{Vector{Float64}}()

u = Vector{Vector{Float64}}()

γ = Vector{Vector{Float64}}()

μ = Vector{Vector{Vector{Float64}}}()

v1 = layers[1].weights'

push!(γ, layers[1].bias)

l1, u1 = input_layer_bounds(layers[1], input, ϵ)

push!(l, l1)

push!(u, u1)

for i in 2:n_layer

n_input = length(layers[i-1].bias)

n_output = length(layers[i].bias)

input_ReLU = relaxed_ReLU.(last(l), last(u))

D = Diagonal(input_ReLU)

WD = layers[i].weights*D

v1 = v1 * WD'

map!(g -> WD*g, γ, γ)

for M in μ

map!(m -> WD*m, M, M)

end

push!(γ, layers[i].bias)

push!(μ, new_μ(n_input, n_output, input_ReLU, WD))

ψ = v1' * input + sum(γ)

eps_v1_sum = ϵ * vec(sum(abs, v1, dims = 1))

neg, pos = all_neg_pos_sums(input_ReLU, l, μ, n_output)

push!(l, ψ - eps_v1_sum + neg)

push!(u, ψ + eps_v1_sum - pos)

end

return l, u

end

Algorithm 8.4. Reachability anal-
ysis in FastLin via network relax-
ation. The variables in the (k +
1)th dual network is computed by
reusing the variables in the kth
dual network.

algorithms for verifying deep neural networks 52

struct FastLin

maxIter::Int64

ϵ0::Float64

accuracy::Float64

end

function solve(solver::FastLin, problem::Problem)

ϵ_upper = 2 * max(solver.ϵ0, maximum(problem.input.radius))

ϵ = fill(maximum(problem.input.radius), solver.maxIter+1)

ϵ_lower = 0.0

n_input = dim(problem.input)

for i = 1:solver.maxIter

input_bounds = Hyperrectangle(problem.input.center, fill(ϵ[i], n_input))

output_bounds = forward_network(solver, problem.network, input_bounds)

if issubset(output_bounds, problem.output)

ϵ_lower = ϵ[i]

ϵ[i+1] = (ϵ[i] + ϵ_upper) / 2

abs(ϵ[i] - ϵ[i+1]) > solver.accuracy || break

else

ϵ_upper = ϵ[i]

ϵ[i+1] = (ϵ[i] + ϵ_lower) / 2

end

end

if ϵ_lower > maximum(problem.input.radius)

return AdversarialResult(:holds, ϵ_lower)

else

return AdversarialResult(:violated, ϵ_lower)

end

end

Algorithm 8.5. FastLin. This main
function shows the binary search
process to determine the maxi-
mum allowable disturbance in the
input space.

algorithms for verifying deep neural networks 53

8.3 FastLip

FastLip [41] estimates the local Lipschitz constant, which is equivalent to what Certify com-
putes in (84). Certify considers only networks with one hidden layer, while FastLip deals with
networks with multiple layers. Same as in FastLin, FastLip takes in a hyperrectangle input set
and a polytope output set. For simplicity, we assume the output set is only a half space defined
by cTy ≤ d. FastLip optimizes the following problem,

min
x

ε, (111a)

s.t. ‖x − x0‖q ≥ ε, y = f(x), cTy ≥ d. (111b)

Let o(x) = cTy − d = cTf(x)− d. Assume ε satisfies the above optimization, then o(x) ≥ 0 for
some x with ‖x − x0‖q = ε. Similar to (81), we have the following relationship

0 ≤ o(x) ≤ o(x0) + ε max
‖x−x0‖q≤ε

‖∇o‖p. (112)

Hence, the solution of the problem (111) is bounded by

min
‖x−x0‖q≥ε,o(x)≥0

ε ≥ − o(x0)

max‖x−x0‖q≤ε ‖∇o‖p
. (113)

The max over ‖∇o‖p is hard to compute without knowing the optimal solution ε on the left
hand side. In practice, the max over ‖∇o‖p is taken over X = {x = ‖x− x0‖q ≤ εFastLin} where
εFastLin is the solution obtained from FastLin. The adversarial bound is chosen as the minimum
of εFastLin and the right hand side of (113). For simplicity, we only consider the norm with p = 1
and q = ∞.

As shown in (113), to compute the adversarial bound ε, we need to compute the gradient
∇o. Recall that Certify uses semidefinite relaxation to compute ‖∇o‖1. FastLip uses a different
approach to estimate element-wise derivative ∇xj o = ∂o

∂xj
for j ∈ {1, . . . , k0}, then

max
x∈X

‖∇xo‖1 ≤ ∑
j

max
x∈X

|∇xj o|. (114)

The computation of the gradient follows from the method discussed in section 4.3, which
uses interval arithmetic and considers the chain rule. Given the bounds computed in FastLin,
the activation pattern can be determined. Hence, the lower and upper bounds of the gradients
of the activation functions can be determined. Then the bounds on gradients Gi and Gi can
be computed following (22) and (23).32 Given the bounds on the gradients, the gradient of o 32 The original paper uses a dif-

ferent set of equations. The two
derivations are indeed equivalent.

satisfies that
[c]T+Gn + [c]T−Gn︸ ︷︷ ︸

a

≤ ∇o ≤ [c]T+Gn + [c]T−Gn︸ ︷︷ ︸
b

. (115)

Then the maximum 1-norm gradient is

max
x∈X

‖∇xo‖1 ≤ ∑
j

max
x∈X

|∇xj o|1 = ∑
j

max{|aj|, |bj|}. (116)

Then

εFastLip ..= min

{
−o(x0)

∑j max{|aj|, |bj|}
, εFastLin

}
. (117)

Our implementation is shown in algorithm 8.6.

algorithms for verifying deep neural networks 54

struct FastLip

maxIter::Int64

ϵ0::Float64

accuracy::Float64

end

function solve(solver::FastLip, problem::Problem)

c, d = tosimplehrep(convert(HPolytope, problem.output))

y = compute_output(problem.network, problem.input.center)

o = (c * y - d)[1]

if o > 0

return AdversarialResult(:violated, -o)

end

result = solve(FastLin(solver), problem)

result.status == :violated && return result

ϵ_fastLin = result.max_disturbance

LG, UG = get_gradient(problem.network, problem.input)

a, b = interval_map(c, LG, UG)

v = max.(abs.(a), abs.(b))

ϵ = min(-o/sum(v), ϵ_fastLin)

if ϵ > maximum(problem.input.radius)

return AdversarialResult(:holds, ϵ)

else

return AdversarialResult(:violated, ϵ)

end

end

Algorithm 8.6. FastLip. FastLip de-
pends on FastLin and further es-
timates the allowable input range
by computing a local Lipschitz con-
stant of the network.

8.4 DLV

DLV [18] searches not only the input space but also the hidden layers for a possible counter
example. It uses a layer-by-layer approach. At layer i, it tries to find an assignment of the hidden
nodes zi that satisfies the following two constraints:

1. Under the forward mapping fi+1→n
..= fn ◦ · · · ◦ fi+1, the output fi+1→n(zi) does not belong

to the desired constraint Y .

2. Under the backward mapping f1→i
..= fi ◦ · · · ◦ f1, there is a valid input x ∈ X such that

f1→i(x) = zi.

The conditions can be written concisely as

(f1→i)
−1(zi)

⋂
X 6= ∅, (118a)

fi+1→n(zi) /∈ Y . (118b)

Overall procedure To search for zi that satisfies (118), DLV does the following steps layer by
layer.

1. Find a reachable set Ri at layer i given the reachable set Ri−1 at layer i − 1. The reachable
set at the input layer is R0

..= X .

2. Build a search tree inside Ri, denoted Ti. The search tree Ti should be a refinement of the
search tree Ti−1 in the previous layer.33

33 The branches in the search tree
are called ladders in the original
paper [18].

algorithms for verifying deep neural networks 55

Figure 18. Illustration of the DLV
approach. DLV uses layer-by-layer
analysis. At layer i, it computes an
over-approximated reachable set
and a finer search tree based on
the reachable set and the search
tree in layer i − 1. For each point
on the search tree, DLV first checks
whether it violates the output con-
straint Y using the forward map.
For a point that violates the out-
put constraint, DLV then checks
whether it is reachable given the
input constraint X using the back-
ward map. If such a point is reach-
able, then the corresponding input
value is taken as a counter exam-
ple.

3. Search for a counter example in the search tree Ti that satisfies (118). If such an example is
found, the property is violated. If not, we continue to the next layer.

The procedure is illustrated in figure 18. The key insight is that we can refine the search tree
layer by layer. When it is closer to the output layer, it is easier to sample for counter examples.
The original DLV implementation34 uses SMT solvers to construct a reachable set in step 1 34 https://github.com/VeriDeep

/DLVand build a search tree in step 2. For simplicity, our implementation in algorithm 8.7 does
not involve SMT solvers. For step 1, we may compute the reachable set using any reachability
method discussed in section 5. In algorithm 8.7, we use interval arithmetic by directly calling
MaxSens using the function get_bounds in algorithm 5.5. The considerations in building the
search tree in step 2 and the satisfiability check in step 3 are discussed below.

(a) (b)
Figure 19. Illustration of a search
tree in a 2D hidden space. (a) Com-
plex search tree that explores all di-
rections. (b) Simplified search tree
for element-wise exploration.

Search tree To build a search tree, we may explore all possible directions as shown in fig-
ure 19a. However, the complexity grows exponentially with ki, the number of nodes in layer
i. The authors of DLV suggest that we decompose the high-dimensional search space into
several perpendicular low-dimensional search spaces, and only build search trees in those
low-dimensional search spaces. Here, we simplify the search to element-wise exploration, i.e.,
we sample every hidden node separately as shown in figure 19b. The construction of the search
tree for a new layer needs to ensure that the tree is finer in the new layer. A set of conditions
that precisely define ‘‘finer’’ are discussed in the DLV paper [18]. The problem of finding a
search tree is then solved by calling an SMT solver.

For simplicity, our implementation takes equidistant samples for every hidden node. The
sampling interval for node zi,j is denoted εi,j. The sample intervals are refined layer by layer. For
the input node, the sampling intervals ε0,j for all j ∈ {1, . . . , k0} are set to a solver-specified value.
The sample interval at layer i − 1 indeed defines a hyperrectangle spanned by the following
vectors

vi−1,1
..= [εi−1,1, 0, . . . , 0], vi−1,2

..= [0, εi−1,2, 0, . . . , 0], . . . , vi−1,ki−1
..= [0, . . . , 0, εi−1,ki−1

]. (119)

No point, with the exception of the vertices of the hyperrectangle, are evaluated at layer i − 1. In
layer i, we need to ensure that we evaluate points inside the hyperrectangle, as shown in figure 18.
The vertices of the hyperrectangle are mapped to Wivi−1,j′ at layer i for all j′ ∈ {1, . . . , ki−1}.
For the jth node in layer i, the projected sampling interval given the hyperrectangle at layer
i − 1 is maxj′ σi,j(|wi,jvi−1,j′ |) = maxj′ σi,j(|wi,j,j′ |εi−1,j′).35 We then set the sample interval to

35 σi,j is the activation function for
node j at layer i. wi,j is the jth row
in the weight matrix Wi . wi,j,k is the
kth entry in wi,j.

https://github.com/VeriDeep/DLV
https://github.com/VeriDeep/DLV

algorithms for verifying deep neural networks 56

struct DLV

optimizer

ϵ::Float64

end

function solve(solver::DLV, problem::Problem)

η = get_bounds(problem)

δ = Vector{Vector{Float64}}(undef,length(η))

δ[1] = fill(solver.ϵ, dim(η[1]))

if issubset(last(η), problem.output)

return CounterExampleResult(:holds)

end

output = compute_output(problem.network, problem.input.center)

for (i, layer) in enumerate(problem.network.layers)

δ[i+1] = get_manipulation(layer, δ[i], η[i+1])

if i == length(problem.network.layers)

mapping = x -> (x ∈ problem.output)

else

forward_nnet = Network(problem.network.layers[i+1:end])

mapping = x -> (compute_output(forward_nnet, x) ∈ problem.output)

end

var, y = bounded_variation(η[i+1], mapping, δ[i+1])

if var

backward_nnet = Network(problem.network.layers[1:i])

status, x = backward_map(y, backward_nnet, η[1:i+1])

if status

return CounterExampleResult(:violated, x)

end

end

end

return ReachabilityResult(:violated, [last(η)])

end

Algorithm 8.7. Main code for
DLV. First, the reachable set η for
each layer is computed by calling
get_bounds. Then the sampling in-
tervals for the input layer are ini-
tialized. The solver first checks for
counter examples in the input layer
by calling bounded_variation. If
no counter example is found,
the solver then proceeds to the
hidden layers. For every hidden
layer, the desired sampling in-
tervals are computed by calling
get_manipulation. Then the solver
checks for hidden values that
do not map to Y by calling
bounded_variation. For those hid-
den values, the solver then maps
back to the input layer by call-
ing backward_map. If a correspond-
ing input is found, it returns the
input as a counter example for
the problem. Otherwise, it goes
to the next layer. The details of
the functions get_manipulation

and bounded_variation are not in-
cluded.

algorithms for verifying deep neural networks 57

be a value smaller than the projected sampling interval:

εi,j
..= γ max

j′
σi,j(|wi,j,j′ |εi−1,j′), (120)

where γ ∈ (0, 1) is set by the solver. This function is implemented in get_manipulation.
Given the sampling interval εi, the search tree Ti consists of 2ki chain branches. All branches

are centered at f1→i(x0). Then chains move along vi,j in either the positive direction or the
negative direction,

f1→i(x0) → f1→i(x0) + 1 · vi,j → f1→i(x0) + 2 · vi,j → · · · (121a)
f1→i(x0) → f1→i(x0)− 1 · vi,j → f1→i(x0)− 2 · vi,j → · · · (121b)

Since j ∈ {1, . . . , ki}, we then have 2ki chain branches. For example, in figure 19b, the search
tree in two-dimensional space contains four branches. We don’t need to explicitly construct
the search tree. The search tree will be implicitly traversed when we check for satisfiability in
step 3.

The original implementation of DLV is always complete and is sound when the search tree
obtained by SMT solvers is minimal [18]. The tree nodes on a minimal search tree effectively cover
all branches of a network. However, the search tree in our implementation is built heuristically
and may not be minimal. To still make it sound, we only return holds when the output reachable
set belongs to the output constraint. Otherwise, even if a counter example is not found, we
return a violated reachability result. Hence, our implementation is sound but not complete.

Satisfiability check For every sampled value zi in the search tree, we first check if the correspond-
ing output belongs to Y . The function is implemented in bounded_variation, which outputs
the points on the search tree that violate the output constraint. The original paper [18] indeed
computes the maximum bounded variation of the search tree, i.e., the maximum number of
links that connect one satisfying node and one unsatisfying node along any tree path. As only
one counter example is needed to falsify our problem, our implementation only checks for the
existence of such a link.

If such a zi is found, we solve the following optimization problem to see if zi is reachable
from X :36 36 The point zi may lie in the

over-approximated area that is not
reachable from the input set X .min

x
‖x − x0‖∞, (122a)

s.t. x ∈ X , f1→i(x) = zi. (122b)

The optimization problem is solved using a MILP encoding in backward_map. The method is
similar to NSVerify. If we find such an x, then it is a counter example.

9 Search and Optimization

This section discusses methods that combine search with optimization approaches. These meth-
ods leverage the piecewise linearity in the activation functions to develop efficient algorithms.
Sherlock [10] uses local and global search to compute bounds on the output, solving different
optimization problems during the local search and the global search. BaB [7] uses branch and
bound to compute bounds on the output, where the branch step corresponds to search and the
bound step corresponds to optimization. Planet [13] formulates the verification problem as a

algorithms for verifying deep neural networks 58

satisfiability problem, searching for an activation pattern such that a feasible input is mapped
to an infeasible output. Reluplex [20] uses a simplex algorithm that searches for a feasible
activation pattern that leads to an infeasible output.

9.1 Sherlock

Sherlock [10] estimates the output range for a network with a single output, i.e., kn = 1. If
kn > 1, the method works for each individual variable. Given the input domain X , we compute
the tightest output bounds

`n = min
x∈X

f (x), un = max
x∈X

f (x). (123)

Sherlock solves (123) by combining local search and global search. In local search, it solves a
linear program to find the optimal value in a given line segment of the function f. In global
search, it solves a feasibility program to check whether the current local optimal bound can
be improved. To find the global optimal bound, the solver iteratively does local search and
global search. This approach is illustrated in figure 20. The main process is implemented in
algorithm 9.1.

struct Sherlock

optimizer

ϵ::Float64

end

function solve(solver::Sherlock, problem::Problem)

(x_u, u) = output_bound(solver, problem, :max)

(x_l, l) = output_bound(solver, problem, :min)

bound = Hyperrectangle(low = [l], high = [u])

reach = Hyperrectangle(low = [l - solver.ϵ], high = [u + solver.ϵ])

return interpret_result(reach, bound, problem.output, x_l, x_u)

end

function output_bound(solver::Sherlock, problem::Problem, type::Symbol)

opt = solver.optimizer

x = sample(problem.input)

while true

(x, bound) = local_search(problem, x, opt, type)

bound_ϵ = bound + ifelse(type == :max, solver.ϵ, -solver.ϵ)

(x_new, bound_new, feasible) = global_search(problem, bound_ϵ,

opt, type)

feasible || return (x, bound)

(x, bound) = (x_new, bound_new)

end

end

Algorithm 9.1. The main func-
tion in Sherlock. Sherlock com-
putes both the upper and the
lower bound of the output node
through the function output_bound

and then interprets the result with
respect to the given output con-
straint. The function output_bound

performs iterative local and global
search in the while loop. The global
search step needs to improve the
bound by at least ε. The while
loop is broken if the global search
fails. The value ε is specified by the
solver, which affects the tightness
of the bound.

Figure 20. Illustration of the Sher-
lock approach. Sherlock combines
local and global search. For a net-
work with ReLU activations, the
function represented by the net-
work is piecewise linear. Local
search improves the bound in a lin-
ear segment. Global search finds
a point that improves the local
bound by ε, which lies in another
linear segment.

Local search Starting from a sampled point x∗ in the input domain. Local search tries to find
a better solution that has the same activation pattern as x∗, i.e., in the same line segment of f.
Denote the activation pattern with respect to x∗ as δ∗i,j for all layers i and nodes j. The network

algorithms for verifying deep neural networks 59

is encoded using (43). The local optimization problem for the upper bound is formulated as

max
z0,...,zn ,ẑ1,...,ẑn

∇f(x∗)Tz0, (124a)

s.t. z0 ∈ X , (124b)
zi,j = ẑi,j ≥ 0, if δ∗i,j = 1, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}, (124c)

zi,j = 0, ẑi,j ≤ 0, if δ∗i,j = 0, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}, (124d)

ẑi = Wizi−1 + bi, ∀i ∈ {1, . . . , n}, (124e)

where ∇f(x∗) is the gradient at x∗ computed by (18). The optimal solution is denoted as xl . The
corresponding bound is ul

n
..= f (xl). Similarly we can compute the lower bound by changing

the max to min. The local search is implemented in algorithm 9.2.

function local_search(problem::Problem, x, optimizer, type::Symbol)

nnet = problem.network

act_pattern = get_activation(nnet, x)

gradient = get_gradient(nnet, x)

model = Model(with_optimizer(optimizer))

neurons = init_neurons(model, nnet)

add_set_constraint!(model, problem.input, first(neurons))

encode_network!(model, nnet, neurons, act_pattern, StandardLP())

o = gradient * neurons[1]

index = ifelse(type == :max, 1, -1)

@objective(model, Max, index * o[1])

optimize!(model)

x_new = value(neurons[1])

bound_new = compute_output(nnet, x_new)

return (x_new, bound_new[1])

end

Algorithm 9.2. Local search in Sher-
lock, which solves equation (124).
The network is encoded as a set
of linear constraints according to
the given activation pattern. Those
constraints confine the function f
to the line segment that x∗ lies
on. The slope of the line segment
equals the gradient of f at x∗.
Hence, the solution of the local
search is a local optimum of the
function f .

Global search Given the bound from local search, a global search aims to improve the bound
by ε, a solver-specified value. The global search problem is a feasibility problem. For example,
for the upper bound, it tries to find a solution that satisfies

x ∈ X , f (x) ≥ ul
n + ε. (125)

This problem is solved by calling NSVerify. If a solution xg is found, then the upper bound is
updated to ug

n = f (xg). The global search is implemented in algorithm 9.3.
Since global search only solves a feasibility problem, the solution is not guaranteed to be a

local optimum. Once a new global bound is found, local search will be called again to obtain
the local optimum with respect to the new result. The reference point in the local search is set
to x∗ ..= xg. After the local search, the global search will be called again. If there is no solution
for the global search, we conclude that the upper bound is the bound obtained by the last local
search, i.e., un

..= ul
n. Similarly, we can compute the global lower bound.

algorithms for verifying deep neural networks 60

function global_search(problem::Problem, bound, optimizer, type::Symbol)

index = ifelse(type == :max, 1.0, -1.0)

h = HalfSpace([index], index * bound)

output_set = HPolytope([h])

problem_new = Problem(problem.network, problem.input, output_set)

solver = NSVerify(optimizer)

result = solve(solver, problem_new)

if result.status == :violated

x = result.counter_example

bound = compute_output(problem.network, x)

return (x, bound[1], true)

else

return ([], 0.0, false)

end

end

Algorithm 9.3. Global search in
Sherlock. It calls NSVerify to solve
equation (125) to determine if the
bound can be improved by ε or
not. If there is such a point that im-
proves the bound by at least ε, the
point and the new bound are re-
turned. If there does not exist such
a point, the problem is determined
infeasible by returning a false flag.

Figure 21. Interpreting results. The
upper line illustrates the computed
bound [l, u]and the potential reach-
able set [l − ε, u + ε]. The bottom
three lines illustrate three differ-
ent output constraints Y . If Y does
not cover either ` or u, the solver
returns violated. If Y covers the
reachable set, the solver returns
holds. Otherwise, the solver re-
turns unknown.

Result interpretation The original purpose of Sherlock is only to obtain tight bounds. To fit into
our problem formulation (4), the obtained bounds are compared against the output constraint
Y . The bounding set B ..= [`n, un] is tight with at most ε uncertainty. The reachable set is defined
as R̃ ..= [`n − ε, un + ε]. The solution of the problem can be determined by

R̃ ∈ Y ⇒ holds, (126a)
B /∈ Y ⇒ violated, (126b)

otherwise ⇒ Undetermined. (126c)

The three conditions are illustrated in figure 21 and implemented in algorithm 9.4. When the
reachable set belongs to the output constraint, the property holds. When either bound un or `n

exceeds the output constraint, the property is violated. In this case, we can output the counter
example, which is the point that achieves either un or `n that violates the constraint. Otherwise,
the problem is undetermined. The smaller the ε, the more accurate the result, as the problem
is less likely to be undetermined. It is worth noting that the key advantage of Sherlock is to
output tight bounds. It calls optimization solvers multiple times during the search for bounds.
If the purpose is only to verify a given output constraint, it would be more computationally
efficient to solve a feasibility problem using NSVerify, which corresponds to one global search
step in Sherlock.

function interpret_result(reach, bound, output, x_l, x_u)

if high(reach) > high(output) && low(reach) < low(output)

return ReachabilityResult(:holds, reach)

end

high(bound) > high(output) && return CounterExampleResult(:violated, x_u)

low(bound) < low(output) && return CounterExampleResult(:violated, x_l)

return RechabilityResult(:Unknown, reach)

end

Algorithm 9.4. Interpretation of re-
sults. The code implements equa-
tion (126) and outputs correspond-
ing counter examples when there
is a violation. The input reach cor-
responds to [`n − ε, un + ε]. The in-
put bound corresponds to [`n, un].
The input output is the output con-
straint Y . The last two inputs are
the points that achieve `n and un
respectively.

algorithms for verifying deep neural networks 61

9.2 BaB

BaB [7] uses branch and bound to estimate the output bounds of a network.37 The main loop is 37 It is observed in the paper that
several methods, such as Reluplex
and Planet, can also be viewed as
branch and bound.

shown in algorithm 9.5. For simplicity, we assume that the network only has one output node.
Similar to Sherlock, the solver tries to compute the lower and upper bounds of the output in
(123). The bounds are computed using the function output_bound. The results are interpreted
by interpret_result in algorithm 9.4. BaB is different from Sherlock mainly in the method to
estimate bounds. In the following discussion, we discuss the approach to estimate the upper
bound un. Estimation of `n follows easily.

We maintain a global upper bound ūn of un, and a global lower bound un of un. The lower
bound un is computed by sampling for a concrete input, hence it is also called the concrete
bound. The upper bound ūn is computed with respect to a relaxation of the problem, hence it
is called the approximated bound. The concrete bound always provides an under-estimation,
while the upper bound always provides an over-estimation. For the lower bound `n, its lower
bound `n is the approximated bound, while its upper bound ¯̀n is the concrete bound. These
two possibilities are encoded by the :max and :min symbols in algorithm 9.5.

If ūn − un < ε for some small ε specified by the solver, the over-estimation is small. Then we
conclude un is found. To minimize the over-approximation, the bounds ūn and un are improved
by iterative interval refinement (a search process) similar to the procedure discussed in ReluVal
in section 8.1.

(a) Step 1 (b) Step 2 (c) Step 3

Figure 22. Illustration of branch
and bound to estimate the upper
bound of y. In step 1, an approxi-
mated upper bound (dashed line)
and a concrete lower bound (solid
line) are computed for the whole
input interval. As there is a large
gap between the two bounds (blue
range), the input interval is split in
two. In step 2, approximated upper
bounds and concrete lower bounds
are computed for the two intervals
respectively. As the upper bound
of the left interval is smaller than
the lower bound of the right in-
terval, the left interval is pruned
out. The new global bounds are
updated to be the bounds of the
right interval. In step 3, the right
interval is further split into two in-
tervals. The previous process is re-
peated. The new bounds are close
to each other. Hence, the global up-
per bound of y is found.

Search strategy During the search process, a list of input subsets {Xi}i are recorded. In addition,
the approximated bound of that subset Xi is recorded, which is used to prioritize the list. For
the estimation of un, we record ūn(Xi). The list satisfies that ūn(X1) ≥ ūn(X2) ≥ · · · . For the
estimation of `n, we record `n(Xi). The list satisfies that `n(X1) ≤ `n(X2) ≤ · · · .

At each iteration, the first domain in the priority queue, i.e., the domain with the largest
upper bound ūn(X1) or the domain with the smallest lower bound `n(X1), is picked out and
split into two domains. In ReluVal, we split the index that corresponds to the greatest smear
value. In BaB, we split the index that has the longest interval. The resulting two domains are
denoted X j

1 for j ∈ {1, 2}.
For the two domains, we compute their approximated and concrete bounds ūn(X j

1) and
un(X

j
1) for j ∈ {1, 2}. The global lower bound un(X) is updated to maxj un(X

j
1) if it is greater

than the previous global lower bound. If the upper bound ūn(X j
1) is greater than the global

algorithms for verifying deep neural networks 62

lower bound, the corresponding sub domain X j
1 needs further splits. Then X j

1 is pushed back
to the priority list. The current global upper bound ūn(X) is ūn(X1) in the new list.

The search terminates if the global concrete and approximated bounds are close to each
other, i.e., ūn(X)− un(X) < ε. The search process is illustrated in figure 22.

struct BaB

optimizer

ϵ::Float64

end

function solve(solver::BaB, problem::Problem)

(u_approx, u, x_u) = output_bound(solver, problem, :max)

(l_approx, l, x_l) = output_bound(solver, problem, :min)

bound = Hyperrectangle(low = [l], high = [u])

reach = Hyperrectangle(low = [l_approx], high = [u_approx])

return interpret_result(reach, bound, problem.output, x_l, x_u)

end

function output_bound(solver::BaB, problem::Problem, type::Symbol)

nnet = problem.network

global_concrete, x_star = concrete_bound(nnet, problem.input, type)

global_approx = approx_bound(nnet, problem.input, solver.optimizer, type)

doms = [(global_approx, problem.input)]

index = ifelse(type == :max, 1, -1)

while index * (global_approx - global_concrete) > solver.ϵ

dom = pick_out(doms)

subdoms = split_dom(dom[2])

for i in 1:length(subdoms)

dom_concrete, x = concrete_bound(nnet, subdoms[i], type)

dom_approx = approx_bound(nnet, subdoms[i], solver.optimizer, type)

if index * (dom_concrete - global_concrete) > 0

(global_concrete, x_star) = (dom_concrete, x)

end

if index * (dom_approx - global_concrete) > 0

add_domain!(doms, (dom_approx, subdoms[i]), type)

end

end

global_approx = doms[1][1]

end

return (global_approx, global_concrete, x_star)

end

Algorithm 9.5. The main function
in BaB. BaB computes both the
upper and the lower bound of
the output node through the func-
tion output_bound and then inter-
prets the result with respect to
the given output constraint. The
function output_bound performs
branch and bound in the while
loop. The solver keeps track of a
concrete under-estimation and an
approximated over-estimation in
the search process. The search ter-
minates once the two bounds are
close to each other. The value ε is
specified by the solver, which af-
fects the tightness of the bound.

Concrete bounds The concrete bounds un(Xi) and ¯̀n(Xi) are computed by sampling in the
domain Xi.38 Heuristically, we only check three points in a domain, the upper and lower 38 ReluVal uses a similar ap-

proach to search for violations in
check_inclusion.

bounds of the domain, and the center point. Hence, an upper bound is always accompanied
with a concrete sample input that achieves that bound. Computation of concrete bounds is
implemented in the function concrete_bound in algorithm 9.6.

Approximated bounds The approximated bounds ūn(Xi) and `n(Xi) are computed by mini-
mizing the output given the ∆-relaxation of the network. For example, ūn(Xi) is computed by

algorithms for verifying deep neural networks 63

max
z0,...,zn ,ẑ1,...,ẑn

zn, (127a)

s.t. zi,j = ẑi,j, ∀i ∈ {1, . . . , n − 1}, j ∈ Γ+
i , (127b)

zi,j = 0, ∀i ∈ {1, . . . , n − 1}, j ∈ Γ−
i , (127c)

zi,j ≥ ẑi,j, zi,j ≥ 0, zi,j ≤
ûi,j(ẑi,j − ˆ̀ i,j)

ûi,j − ˆ̀ i,j
, ∀i ∈ {1, . . . , n − 1}, j ∈ Γi, (127d)

ẑi = Wizi−1 + bi, ∀i ∈ {1, . . . , n − 1}, (127e)
z0 ∈ Xi. (127f)

The approximated bound `n(Xi) can be computed by changing the maximization to minimiza-
tion in (127). ConvDual solves a similar optimization problem in (73), though it transforms
it to the dual problem and then obtains a heuristic solution. Due to relaxation, the above
optimization overestimates the true bounds, i.e., ūn(Xi) ≥ un(Xi) and `n(Xi) ≤ `n(Xi). The
finer Xi, the closer the approximated bound is to the true value. Hence, the approximated
bound is improved during iterative refinement. Computation of the approximated bounds is
implemented in the function approx_bound in algorithm 9.6.

function concrete_bound(nnet::Network, subdom::Hyperrectangle, type::Symbol)

points = [subdom.center, low(subdom), high(subdom)]

values = Vector{Float64}(undef, 0)

for p in points

push!(values, sum(compute_output(nnet, p)))

end

value, index = ifelse(type == :min, findmin(values), findmax(values))

return (value, points[index])

end

function approx_bound(nnet::Network, dom::Hyperrectangle, optimizer, type)

bounds = get_bounds(nnet, dom)

model = Model(with_optimizer(optimizer))

neurons = init_neurons(model, nnet)

add_set_constraint!(model, dom, first(neurons))

encode_network!(model, nnet, neurons, bounds, TriangularRelaxedLP())

index = ifelse(type == :max, 1, -1)

o = sum(last(neurons))

@objective(model, Max, index * o)

optimize!(model)

termination_status(model) == OPTIMAL && return value(o)

end

Algorithm 9.6. Compute bounds
in BaB. The concrete bound is
computed by sampling in the do-
main. Heuristically, we sample
three points: lower bound of do-
main, upper bound of domain, and
center of domain. The approxi-
mated bound is computed by min-
imizing the output constrained on
∆-relaxation of the network.

Result interpretation Similar to Sherlock, the original purpose of BaB is only to obtain tight
bounds. To fit into our problem formulation (4), the obtained bounds are compared against the
output constraint Y . Define the bounding set B ..= [¯̀n, un], which considers only the concrete
bounds, and are tight with at most ε uncertainty. The reachable set is defined as R̃ ..= [`n, ūn],
which considers only the approximated bounds. Then the solution to the problem can be
determined following the conditions in (126).

algorithms for verifying deep neural networks 64

9.3 Planet

Figure 23. Illustration of binary
tree search to assign values to δi,j
for all nodes j in layer i.

Planet [13] formulates the problem (4) as a satisfiability problem, which consists of trying
to find an assignment for δi for all i such that a point in the input set can be mapped to the
complement of the output set. The search in Planet can be understood as a binary tree search
as the assignment is either 0 or 1 as illustrated in figure 23. The novelty of Planet is that it uses
linear programming to 1) infer tighter bounds on the nodes, 2) filter out conflicting assignments,
and 3) infer more assignments given a partial assignment of δi. In this way, the search can be
more efficient.

The original implementation39 is eager, which modifies the main loop in a state-of-the-art 39 https://github.com/progirep

/planetSAT solver (i.e., MiniSAT) to impose network constraints during the search phase with partial
assignments for δi. If conflicts are detected in the partial assignments, the solver performs
back-tracking.

For simplicity, we didn’t follow the original eager implementation. Instead, we only check
for conflicts when all δ have been assigned. We call PicoSAT.jl40 to solve the SAT problem for 40 https://github.com/jakebolew

ski/PicoSAT.jlassignment. In this way, we can leave the SAT solver untouched. The main loop in algorithm 9.7
is different from the Planet paper. In the non-eager implementation, the node-wise bounds
are computed first. Planet introduces an optimization approach to compute tighter bounds,
which will be discussed below. Then a clause Ψ is initialized with respect to the bounds. The
clause can be understood as a pruned search tree. A full assignment of all δ’s according to the
clause is computed by calling PicoSAT. The feasibility of this assignment is checked by elastic
filtering, which returns conflicts in the assignment if the assignment is not feasible. Then the
conflicts are added to the clause, which helps further pruning the search tree. If the assignment
is feasible, that means there is an activation pattern that maps a desired input to an undesired
output. Then the property is violated. If no such assignment exists, the property holds.

struct Planet

optimizer

eager::Bool

end

function solve(solver::Planet, problem::Problem)

status, bounds = tighten_bounds(problem, solver.optimizer)

status == OPTIMAL || return CounterExampleResult(:holds)

ψ = init_ψ(problem.network, bounds)

δ = PicoSAT.solve(ψ)

opt = solver.optimizer

while δ != :unsatisfiable

status, conflict = elastic_filtering(problem, δ, bounds, opt)

status == INFEASIBLE || return CounterExampleResult(:violated, conflict)

push!(ψ, conflict)

δ = PicoSAT.solve(ψ)

end

return CounterExampleResult(:holds)

end

Algorithm 9.7. Main loop in
Planet. This is a non-eager im-
plementation. First, tight bounds
of node values are computed
through tighten_bounds. Then
the clause Ψ is initialized with
respect to the bounds. A full
assignment according to the clause
is computed by calling PicoSAT.
The feasibility of this assignment
is checked by elastic_filtering,
which returns conflicts in the
assignment if the assignment is
not feasible. Then the conflicts are
added to the clause. The while
loop repeats previous steps. If the
assignment is feasible, that means
there is an activation pattern
that maps a desired input to
an undesired output. Then the
property is violated. If no such
assignment exists, the property is
violated.

Computing tight bounds We first compute the bounds through tighten_bounds in algorithm 9.8.
This function first gets relatively loose bounds `i and ui from get_bounds in algorithm 5.5. Then

https://github.com/progirep/planet
https://github.com/progirep/planet
https://github.com/jakebolewski/PicoSAT.jl
https://github.com/jakebolewski/PicoSAT.jl

algorithms for verifying deep neural networks 65

the following optimization problem is solved

min
z0,...,zn ,ẑ1,...,ẑn

q
n

∑
i=1

ki

∑
j=1

zi,j, (128a)

s.t. z0 ∈ X , zn 6∈ Y , (128b)
zi,j = ẑi,j, ∀i ∈ {1, . . . , n − 1}, j ∈ Γ+

i , (128c)
zi,j = 0, ∀i ∈ {1, . . . , n − 1}, j ∈ Γ−

i , (128d)

zi,j ≥ ẑi,j, zi,j ≥ 0, zi,j ≤
ûi,j(ẑi,j − ˆ̀ i,j)

ûi,j − ˆ̀ i,j
, ∀i ∈ {1, . . . , n − 1}, j ∈ Γi, (128e)

ẑi = Wizi−1 + bi, ∀i ∈ {1, . . . , n}, (128f)

where q ∈ {−1, 1}. When q = −1, we compute the tighter upper bounds. When q = 1, we get
the lower bounds. Here we use ∆-relaxation in (46). If there is no solution in (128), that means
the constraints are infeasible. Hence, for all x ∈ X , y = f(x) ∈ Y . Then the property is satisfied.

function tighten_bounds(problem::Problem, optimizer)

bounds = get_bounds(problem)

network = problem.network

model = Model(with_optimizer(optimizer))

neurons = init_neurons(model, network)

add_set_constraint!(model, problem.input, first(neurons))

add_complementary_set_constraint!(model, problem.output, last(neurons))

encode_network!(model, network, neurons, bounds, TriangularRelaxedLP())

min_sum!(model, neurons)

optimize!(model)

termination_status(model) == OPTIMAL || return (INFEASIBLE, bounds)

lower = value.(neurons)

max_sum!(model, neurons)

optimize!(model)

termination_status(model) == OPTIMAL || return (INFEASIBLE, bounds)

upper = value.(neurons)

new_bounds = Vector{Hyperrectangle}(undef, length(neurons))

for i in 1:length(neurons)

new_bounds[i] = Hyperrectangle(low = lower[i], high = upper[i])

end

return (OPTIMAL, new_bounds)

end

Algorithm 9.8. Obtaining tighter
bounds using optimization. The so-
lution is tighter than get_bounds in
algorithm 5.5. The implementation
encodes equation (128) and solves
the optimization problem by call-
ing the JuMP solver.

Solving the SAT problem A clause Ψ corresponds to a search tree, which encodes a set of binary
conditions. According to the bounds computed earlier, the clause can be initialized as

Ψ =
∧

ˆ̀ i,j≤0≤ûi,j

[{δi,j = 1} ∨ {δi,j = 0}]
∧

0< ˆ̀ i,j

[δi,j = 1]
∧

ûi,j<0
[δi,j = 0]. (129)

algorithms for verifying deep neural networks 66

Solving the SAT problem means finding an assignment of δ’s such that the clause Ψ is true. The
case that Ψ =

∧
i,j[{δi,j = 1} ∨ {δi,j = 0}] corresponds to a full search tree shown in figure 23.

As more conditions are added to the clause, we are essentially pruning the search tree. Elastic
filtering, to be discussed below is used to help the pruning. There may be more than one
solution that satisfies the clause Ψ. We only consider one solution at a time. PicoSAT is called
to find a feasible assignment for δ’s.

Elastic filtering Given an assignment of δi,j’s, we check for conflicts using elastic_filtering

in algorithm 9.9. The problem is defined as

min
z0,...,zn ,ẑ1,...,ẑn ,s1,...,sn

q
n

∑
i=1

ki

∑
j=1

si,j, (130a)

s.t. z0 ∈ X , zn 6∈ Y , (130b)
zi,j = ẑi,j, ∀i ∈ {1, . . . , n − 1}, j ∈ Γ+

i , (130c)
zi,j = 0, ∀i ∈ {1, . . . , n − 1}, j ∈ Γ−

i , (130d)

zi,j ≥ ẑi,j, zi,j ≥ 0, zi,j ≤
ûi,j(ẑi,j − ˆ̀ i,j)

ûi,j − ˆ̀ i,j
, ∀i ∈ {1, . . . , n − 1}, j ∈ Γi, (130e)

ẑi = Wizi−1 + bi, ∀i ∈ {1, . . . , n}, (130f)
zi,j = ẑi,j + si,j ≥ 0, for δi,j = 1, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}, (130g)
zi,j = 0, ẑi,j − si,j ≤ 0, for δi,j = 0, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}, (130h)

which uses both ∆-relaxation (given bounds) and slack relaxation (given activation). If the
assignment of δi,j’s are feasible, then all the slack variables should be non-positive. If some
slack variables are positive, we fix the node with the largest slack value by adding a condition
si,j = 0. Then the optimization problem is solved again and again until there is no feasible
solution. The list of node {(i(1), j(1)), (i(2), j(2)), . . . , (i(k), j(k))} and their δ assignments that we
fixed during the process is a conflict. A conflict means that the δ assignments of those nodes
cannot be satisfied simultaneously. The intuition behind elastic filtering is that we can find
conflicts faster by fixing the most violated constraints.

Once a conflict is determined with respect to an assignment, we can add the conflict back
to the clauses and solve the SAT problem again. If there is no feasible solution of Ψ, the
property holds. If no conflict is found for a specific assignment, the property is violated. Our
implementation is still sound and complete, though it is less efficient than the original eager
implementation. Our implementation requires that input set X be a Hyperrectangle and the
output set Y be a PolytopeComplement.

9.4 Reluplex

Reluplex [20] applies a simplex algorithm to ReLU networks. It searches for a counter example
(10).

For each node (i, j), Reluplex optimizes over two variables zi,j and ẑi,j. There are three possible
statuses for each node (i, j), active (denoted (i, j) ∈ A), inactive (denoted (i, j) ∈ N), and
undetermined (denoted (i, j) ∈ U). Reluplex tries to find a feasible assignment for undetermined
nodes through depth-first search. The basic constraints in Reluplex without considering the

algorithms for verifying deep neural networks 67

function elastic_filtering(problem::Problem, δ, bounds, optimizer)

network = problem.network

model = Model(with_optimizer(optimizer))

neurons = init_neurons(model, network)

add_set_constraint!(model, problem.input, first(neurons))

add_complementary_set_constraint!(model, problem.output, last(neurons))

encode_network!(model, network, neurons, bounds, TriangularRelaxedLP())

SLP = encode_network!(model, network, neurons, δ, SlackLP())

min_sum!(model, SLP.slack)

conflict = Vector{Int64}()

act = get_activation(network, bounds)

while true

optimize!(model)

termination_status(model) == OPTIMAL || return (INFEASIBLE, conflict)

(m, index) = max_slack(value.(SLP.slack), act)

m > 0.0 || return (:Feasible, value.(neurons[1]))

coeff = δ[index[1]][index[2]] ? -1 : 1

node = coeff * get_node_id(network, index)

push!(conflict, node)

@constraint(model, SLP.slack[index[1]][index[2]] == 0.0)

end

end

Algorithm 9.9. Elastic filtering is
used to determine conflicts in an
assignment of all δ’s. It iteratively
solves equation (130). At each it-
eration, it fixes the largest slack
variable to zero. The conflicting se-
quence is found once the optimiza-
tion becomes infeasible.

undetermined nodes are

B = {zi, ẑi :z0 ∈ X , zn 6∈ Y , (131a)
zi,j ≥ 0, zi,j ≥ ẑi,j, ˆ̀ i,j ≤ ẑi,j ≤ ûi,j, (131b)
zi,j = ẑi,j, ẑi,j ≥ 0, ∀(i, j) ∈ A, (131c)
zi,j = 0, ẑi,j < 0, ∀(i, j) ∈ N , (131d)
ẑi = Wizi−1 + bi, ∀i ∈ {1, . . . , n}}, (131e)

At each search step, Reluplex either finds a counter example, or determines that there is no
such counter example (then does backtracking), or assigns one node (i∗, j∗) ∈ U to be active or
inactive. The set B0 ..= B, A0 ..= A, N 0 ..= N , and U 0 ..= U are initialized at the beginning of
the search. At search depth k, we have a set of constraints Bk, which is an intersection of the
basic constraint B and the constraint induced by the assignments of nodes in U 0 during the
search. Bk can be represented in the form of (131) by adding superscript k to B, A, and N . The
relationships among the sets at different depths are

A0 ⊆ A1 ⊆ · · · ⊆ Ak, (132a)
N 0 ⊆ N 1 ⊆ · · · ⊆ N k, (132b)
U 0 ⊃ U 1 ⊃ · · · ⊃ U k. (132c)

At each search step k, we first solve a feasibility problem to check if there is a solution of
Bk−1. If there is no feasible solution that satisfies Bk−1, we do back tracking. If there exists a
solution that satisfies Bk−1, we consider the following two possibilities.

• If all ReLU constraints are satisfied, i.e., zi,j = max{ẑi,j, 0}, then we indeed find a counter
example for the problem (4).

algorithms for verifying deep neural networks 68

• If some ReLU constraints are not satisfied, i.e., zi,j 6= max{ẑi,j, 0}, then we need to fix those
broken nodes during the search. We pick such a broken node (ik, jk) from U k−1. Then
U k = U k−1 \ {(ik, jk)}. We may assign the node to be either active or inactive. In the active
case, Ak = Ak−1 ∪ {(ik, jk)}, N k = N k−1, and

Bk ..= Bk−1 ∩ {zi, ẑi : zik ,jk = ẑik ,jk ≥ 0}. (133)

In the inactive case, Ak = Ak−1, N k = N k−1 ∪ {(ik, jk)}, and

Bk ..= Bk−1 ∩ {zi, ẑi : zik ,jk = 0, ẑik ,jk ≤ 0}. (134)

During the search, we either end up finding a counter example or concluding that there is no
such counter example. The worst case scenario complexity is 2|U |, i.e., , we traverse a depth |U |
binary tree, where |U | computes the cardinality of the set U . It is possible to use elastic filtering
introduced in Planet to help detect conflicts faster.

Our implementation supports input sets X of type Hyperrectangle and output sets Y of
type PolytopeComplement and is shown in algorithm 9.10.41 The depth-first search is performed 41 The original Reluplex uses a data

structure called Tableau to encode
new LP constraints. Conceptually,
our Julia implementation is the
same as the original implementa-
tion, but in a less efficient way.

in the function reluplexStep. The construction of Bk at each search step is done by encode in
algorithm 9.11. The inputs to reluplexStep include,

• model, which encodes the constraint Bk similar to (131).

• b_vars and f_vars, which are ẑ’s and z’s.

• relu_status, which can be either 0, 1 or 2. If it is 0, the corresponding node belongs U k. If it
is 1, the corresponding node belongs Ak. If it is 2, the corresponding node belongs N k.

10 Comparison and Results

This section presents experimental results for our implementation of the algorithms.42 Different 42 In our implementations, read-
ability was favored over speed.
Some of our implementations are
simplified versions of the original
ones that still output the same re-
sults but can be slower.

algorithms handle problems with different specifications as shown in table 1. As described
previously, the objects used to represent the input set X and the output set Y vary along
with the characteristics of the sets that each of the algorithms support. Additionally, different
algorithms output different types of results. We have, consequently, split the algorithms in six
groups such that the same verification problem can be solved by all the algorithms within a
group, facilitating a comparison of the implementations provided with this work. The groups
are as follows:

1. Ai2, ExactReach, and maxSens - Input: HPolytope, Output: HPolytope (bounded).

2. ILP, MIPVerify, and NSVerify - Input: Hyperrectangle, Output: PolytopeComplement.

3. Duality and convDual - Input: Hyperrectangle (uniform radius), Output: Halfspace.

4. FastLin, FastLip, ILP, and MIPVerify - Input: Hyperrectangle, Output: Halfspace.

5. BaB, DLV, ReluVal, and Sherlock - Input: Hyperrectangle, Output: Hyperrectangle (1-D).

6. Planet, Reluplex, and ReluVal - Input: Hyperrectangle, Output: PolytopeComplement and
Hyperrectangle.

Despite having different problem specifications, the exact same property can be encoded
across Groups 2, 3, 4, and 6 by using their corresponding input and output sets to represent
the same constraints.

algorithms for verifying deep neural networks 69

struct Reluplex

optimizer

end

function solve(solver::Reluplex, problem::Problem)

initial_model = Model(solver)

bs, fs = encode(solver, initial_model, problem)

layers = problem.network.layers

initial_status = [zeros(Int, n) for n in n_nodes.(layers)]

insert!(initial_status, 1, zeros(Int, dim(problem.input)))

return reluplex_step(solver, problem, initial_model, bs, fs, initial_status)

end

function reluplex_step(solver::Reluplex,

problem::Problem,

model::Model,

ẑ ::Vector{Vector{VariableRef}},

z::Vector{Vector{VariableRef}},

relu_status::Vector{Vector{Int}})

optimize!(model)

if termination_status(model) == OPTIMAL

i, j = find_relu_to_fix(ẑ , z)

i == 0 && return CounterExampleResult(:violated, value.(first(ẑ)))

for repair_type in 1:2

relu_status[i][j] = repair_type

new_m = Model(solver)

bs, fs = encode(solver, new_m, problem)

enforce_repairs!(new_m, bs, fs, relu_status)

result = reluplex_step(solver, problem, new_m, bs, fs, relu_status)

relu_status[i][j] = 0

result.status == :violated && return result

end

end

return CounterExampleResult(:holds)

end

function enforce_repairs!(model::Model, ẑ , z, relu_status)

for i in 1:length(relu_status), j in 1:length(relu_status[i])

ẑ ᵢⱼ = ẑ [i][j]

zᵢⱼ = z[i][j]

if relu_status[i][j] == 1

type_one_repair!(model, ẑ ᵢⱼ, zᵢⱼ)

elseif relu_status[i][j] == 2

type_two_repair!(model, ẑ ᵢⱼ, zᵢⱼ)

end

end

end

function type_one_repair!(model, ẑ ᵢⱼ, zᵢⱼ)

@constraint(model, ẑ ᵢⱼ == zᵢⱼ)

@constraint(model, ẑ ᵢⱼ >= 0.0)

end

function type_two_repair!(model, ẑ ᵢⱼ, zᵢⱼ)

@constraint(model, ẑ ᵢⱼ <= 0.0)

@constraint(model, zᵢⱼ == 0.0)

end

Algorithm 9.10. Main loop in Re-
luplex. The function reluplexStep

performs depth-first search. At ev-
ery search step, it first solves a fea-
sibility problem encoded in model.
If the problem is infeasible, mean-
ing that no counter example can
be found, we output :holds. If
there is a solution of the problem,
we find the first node such that
the ReLU activation is broken, i.e.,
zi,j 6= [ẑi,j]+. If no such broken
node is found, meaning that we
have found a counter example, we
output :violated with the counter
example. For the broken node, we
can either change its status to 1 or
2, which corresponds to the two
branches in the search. For each
branch, a new constrained problem
is formulated. New constraints are
added through enforce_repairs!,
which encode constraints accord-
ing to relu_status. With the new
model, the search continues into
the next depth.

algorithms for verifying deep neural networks 70

function encode(solver::Reluplex, model::Model, problem::Problem)

layers = problem.network.layers

ẑ = init_neurons(model, layers)

z = init_neurons(model, layers)

activation_constraint!(model, ẑ [1], z[1], Id())

bounds = get_bounds(problem)

for (i, L) in enumerate(layers)

@constraint(model, affine_map(L, z[i]) .== ẑ [i+1])

add_set_constraint!(model, bounds[i], ẑ [i])

activation_constraint!(model, ẑ [i+1], z[i+1], L.activation)

end

add_complementary_set_constraint!(model, problem.output, last(z))

feasibility_problem!(model)

return ẑ , z

end

Algorithm 9.11. Encoding the opti-
mization problem in Reluplex. The
optimization problem has zero ob-
jective and is constrained on B
in equation (131). In the search
process, more constraints are to
be added by enforce_repairs!,
which encode constraints accord-
ing to relu_status.

10.1 Experiments

We used different neural networks to benchmark the performance of the algorithms in different
scenarios. We focused on three contexts: networks of varying sizes trained to classify hand-
written digits from the MNIST dataset [21], the Aircraft Collision Avoidance System (ACAS)
network [20].43 and we created a tiny toy network (small nnet) for which we analytically derived 43 This network is based on a neu-

ral network trained on a very early
prototype of ACAS Xu, targeted
for unmanned aircraft. Details can
be found in the article by Julian,
Kochenderfer, and Owen [19].

its transfer function.

Small nnet We manually specified a toy network and analytically derived the one dimensional
function that it represents. We evaluated simple properties corresponding to upper and lower
bounds of the image of this function for a small interval in the input set. The network has two
hidden layers of two units each.

MNIST For the MNIST networks, we constructed properties that encode regions centered
around a point corresponding to a hand-written digit in the original dataset. We verified a
property associated to the correct classification of the image. The property requires that the
logits (outputs of the final layer) do not vary significantly from those of the original image
when the image is perturbed within a a region in the input space. This corresponds to an `1 ball
centered around the point that corresponds to a sample hand-written image of the number 1
digit. The output setY is an `1 ball built around the original output of the network corresponding
to that input. For algorithms that only support halfspace or polytopeComplement output sets,
we encoded the region where the logit of the digit 0 is less than the logit of the digit 1. The
networks have the following characteristics:

• mnist1. Input size: 748, 1 hidden layer of size: 25, output size: 10 (0.9009 test accuracy).

• mnist2. Input size: 748, 1 hidden layer of size: 100, output size: 10 (0.9463 test accuracy).

• mnist3. Input size: 748, 4 hidden layers of size: 25, output size: 10 (0.9555 test accuracy).

• mnist4. Input size: 748, 6 hidden layers of size: 50, output size: 10 (0.9664 test accuracy).

algorithms for verifying deep neural networks 71

ACAS For the ACAS network, we verified property 10 introduced by Katz et al. [20]. Property
10 corresponds to the situation where the intruder aircraft is far away from the ownship and
the desired output is that the advisory is clear-of-conflict. To make the property faster to verify,
we reduced the volume of the input region by fixing the last three inputs of the network to
specific values instead of the ranges originally defined for the property. This property has
been verified in prior work [20], [40]. For the algorithms that can only support halfspace or
PolytopeComplement output sets, we encoded the region where the first output is less than the
last output. The network has five input units, six hidden layers of 50 units each, and five output
units.

The experiments in Group 5 required networks with a single output node. We used pruned
versions of the exact same networks. We encoded the corresponding properties in the dimension
of the preserved output node. For the MNIST networks this is the output corresponding to
digit 1 and for the ACAS network this is the output corresponding to the cost of advising
clear-of-conflict.

10.2 Results

In the following table, we summarize the results of evaluating the aforementioned properties
with the different algorithms. For each experiment, we recorded the time that it took for each
algorithm to terminate. Timed-out threshold is set to be 24 hours. We also recorded the result
of each algorithm to identify cases in which incomplete algorithms failed to correctly identify
properties that hold.

Group 1 supports hyperrectangle input sets. Groups 2, 3, 4, and 6 support H-polytope input
sets. Group 5 supports hyperrectangle input sets and networks with only one output node.

Algorithm small_nnet mnist1 mnist2 mnist3 mnist4 acas

ExactReach 0.004070968 - - - - -
Ai2 0.005170172 - - - - -
maxSens 0.000201878 16.06772067 16.20866383 16.1892307 15.93491465 0.006839497

Table 2. Experimental results for
group 1. All results are in sec-
onds, missing entries correspond
to experiments that timed-out. An
asterisk indicates the result was
:unknown and two asterisks indi-
cate that the algorithm incorrectly
returned :violated.

Algorithm small_nnet mnist1 mnist2 mnist3 mnist4 acas

NSVerify 0.000437805 0.561558217 1.23185184 0.234906589 - -
MIPVerify 0.422803839 0.236930468 1.055669556 46.36556919 - -
ILP 0.423599637 0.374052375 0.65545287 0.951015935* 4.866014534* 0.108586473*

convDual 0.001725546 0.374052375 0.02184014 0.001638679 0.005836024 0.002674586
Duality 0.001336414* 21.60260384* 130.7149674* 37.3058392* 52.87126159* 0.020148564*

FastLin 2.088460281 0.477470278 0.002369427 0.007551539 0.01564011 0.166508046**
FastLip 9.179938173 0.130989072 0.059900531 0.051348471** 0.091895366** 0.001703324**
MIPVerify 9.940695891 0.256747563 1.23054911 46.77128226 - -
ILP 0.347950783 0.367925285 0.665364297 0.890090777* 4.664959506* 0.00834114*

Planet 0.000247003 0.211006714 0.301637916 0.186482861 - -
Reluplex 0.012245108 125.0347088 62582.48883 - - 2952.784643
Reluval 0.000031296 0.646829741 0.008979679 0.008030365 0.824760803* 0.196084517*

Table 3. Experimental results for
groups 2, 3, 4 and 6. All results are
in seconds, missing entries corre-
spond to experiments that timed-
out. An asterisk indicates the re-
sult was :unknown and two aster-
isks indicate that the algorithm in-
correctly returned :violated.

algorithms for verifying deep neural networks 72

Algorithm small_nnet mnist1 mnist2 mnist3 mnist4 acas

Reluval 0.096123516 0.104757137 0.082225486 0.019977288 0.021589774* 0.000375971*
DLV 0.145483368 0.055010885 0.7606918** 0.203945542** 3.426374089** 0.450508522**
Sherlock 0.150546186 - - - - -
BaB 0.160190662 - - - - -

Table 4. Experimental results for
group 5. All results are in sec-
onds, missing entries correspond
to experiments that timed-out. An
asterisk indicates the result was
:unknown and two asterisks indi-
cate that the algorithm incorrectly
returned :violated.

10.3 Analysis

The experimental results shown in the previous section demonstrate the capability of the
pedagogical implementation to verify realistic networks. Many of the algorithms are able to
verify properties for networks as large as the ACAS Xu networks, which has been used for
prior benchmarks [20], [40]. Overall we observed that algorithms that are complete take a
longer time to run. Consequently, complete algorithms are more amenable, at least at this point
and this implementation, to verifying properties of smaller networks. Algorithms that are not
complete usually rely on over-approximations or other schemes that significantly reduce their
computational cost. Incomplete algorithms are faster and can more easily be used to verify
properties on larger networks.

In particular, for Group 1, we can observe in table 2 that ExactReach and Ai2 timed out for
most of the properties. Currently, our implementations of this algorithms require the conversion
of sets from H-representation to V-representation which is computationally expensive in general.
For example, converting a 700-dimensional polytope is an unreasonable task to perform. The
original implementations of these algorithms are better equipped to handle larger networks.
In particular, Ai2 was specifically designed to avoid this task by using zonotopes, in the near
future we will update our implementation to incorporate this better approach.

For Groups 2, 3, 4 and 6, we can observe in table 3 that NSVerify, MIPVerify, Planet and
Reluplex timed out for some of the properties associated to larger networks, this result is not
surprising as completeness comes at a high computational cost. It is worth noting that 1) many
of the algorithms that are not complete were able to terminate in significantly shorter amounts
of time compared to their complete counterparts, but 2) many of them (the ones marked with
two asterisks) exhibited their in-completeness by returning :violated for properties that, in
fact, hold. Other algorithms, particularly in Group 3, were unable to reach a conclusion and
returned :unknown as a result.

Algorithms in Group 5, as shown in table 4, either terminated very quickly but produced
either incorrect or inconclusive results (Reluval and DLV respectively) or timed out for most
networks such as Sherlock and BaB. Sherlock and BaB try to compute the exact bounds on the
output even if the bounds already lie outside of the output constraint, which can explain why
they timed-out for most networks as other approaches only check if a counter example can
be found, hence should stop much earlier than Sherlock and BaB converge to precise-enough
bounds.

Finally, algorithms that rely on optimization are susceptible to numerical stability issues and
we observed this in the case of MIPVerify and Planet.

11 Conclusion

This article surveyed algorithms for verification of deep neural networks. A unified mathe-
matical framework was introduced to verify satisfiability of a neural network given certain

algorithms for verifying deep neural networks 73

input and output constraints. Three basic verification methods were identified: reachability,
optimization, and search. We classified existing methods into five induced categories according
to their core methodologies, and pointed out the connections among them. In particular, we
reviewed the following methods: 1) reachability methods: ExactReach, Ai2, and MaxSens; 2)
primal optimization methods: NSVerify, MIPVerify, and ILP; 3) dual optimization methods:
Duality, ConvDual, and Certify; 4) search and reachability methods: ReluVal, FastLin, FastLip,
and DLV; and 5) search and optimization methods: Sherlock, BaB, Planet, and Reluplex. In the
numerical experiments, we compare methods that either use similar methodologies or can
solve the same problems. In general, there is a trade-off between completeness of a verification
algorithm and its scalability. Complete algorithms run slower on larger networks, while in-
complete algorithms are more conservative. Pedagogical implementations of all these methods
were provided in Julia. The connections and differences among different methods were pointed
out. This article can serve as a tutorial for students and professionals interested in this emerging
field as well as a benchmark to facilitate the design of new verification algorithms.

Acknowledgments

This work is partially supported by the Center for Automotive Research at Stanford (CARS).
The authors would like to thank many of the authors of the referenced papers for their help in
clarifying their algorithms and reviewing early drafts of this survey: Weiming Xiang, Taylor
Johnson, Hoang-Dung Tran, Martin Vechev, Gagandeep Singh, Alessio Lomuscio, Michael
Akintunde, Osbert Bastani, Zico Kolter, Shiqi Wang, Huan Zhang, Xiaowei Huang, Rudy Bunel,
Reudiger Ehlers, and Guy Katz. The authors would also like to thank Christian Schilling and
Marcelo Forets, the authors of LazySets.jl, for their implementation support, as well as Amelia
Hardy and Zongzhang Zhang for their comments.

References

1. M. E. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano, ‘‘Reachability Analysis for Neural
Agent-Environment Systems,’’ in International Conference on Principles of Knowledge Representation
and Reasoning, 2018.

2. M. E. Akintunde, A. Kevorchian, A. Lomuscio, and E. Pirovano, ‘‘Verification of RNN-Based Neural
Agent-Environment Systems,’’ in AAAI Conference on Artificial Intelligence (AAAI), 2019.

3. C. Barrett and C. Tinelli, ‘‘Satisfiability Modulo Theories,’’ in Handbook of Model Checking, Springer,
2018, pp. 305–343.

4. O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi, ‘‘Measuring
Neural Net Robustness with Constraints,’’ in Advances in Neural Information Processing Systems
(NIPS), 2016.

5. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, ‘‘Julia: A Fresh Approach to Numerical
Computing,’’ SIAM Review, vol. 59, no. 1, pp. 65–98, 2017.

6. S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling, ‘‘JuliaReach: a Toolbox for
Set-Based Reachability,’’ ArXiv, no. 1901.10736, 2019.

7. R. Bunel, I. Turkaslan, P. H. Torr, P. Kohli, and M. P. Kumar, ‘‘A Unified View of Piecewise Linear
Neural Network Verification,’’ ArXiv, no. 1711.00455, 2017.

8. C.-H. Cheng, G. Nührenberg, and H. Ruess, ‘‘Verification of Binarized Neural Networks,’’ ArXiv,
no. 1710.03107, 2017.

algorithms for verifying deep neural networks 74

9. C.-H. Cheng, G. Nührenberg, C.-H. Huang, and H. Ruess, ‘‘Verification of Binarized Neural Net-
works via Inter-Neuron Factoring,’’ in Verified Software. Theories, Tools, and Experiments, 2018.

10. S. Dutta, S. Jha, S. Sanakaranarayanan, and A. Tiwari, ‘‘Output Range Analysis for Deep Neural
Networks,’’ ArXiv, no. 1709.09130, 2017.

11. S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, ‘‘Learning and Verification of Feedback Control
Systems Using Feedforward Neural Networks.,’’ in IFAC Conference on Analysis and Design of Hybrid
Systems (ADHS), 2018.

12. K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli, ‘‘A Dual Approach to Scalable Verifica-
tion of Deep Networks,’’ in Conference on Uncertainty in Artificial Intelligence (UAI), 2018.

13. R. Ehlers, ‘‘Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks,’’ in International
Symposium on Automated Technology for Verification and Analysis, 2017.

14. T. Gehr, M. Mirman, D. Drashsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev, ‘‘Ai2: Safety
and Robustness Certification of Neural Networks with Abstract Interpretation,’’ in IEEE Symposium
on Security and Privacy (SP), 2018.

15. I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning. MIT Press, 2016.

16. K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, ‘‘A Practical Tutorial on Modified
Condition/decision Coverage,’’ 2001.

17. K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep Residual Learning for Image Recognition,’’ in IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

18. X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, ‘‘Safety Verification of Deep Neural Networks,’’
in International Conference on Computer Aided Verification, 2017.

19. K. Julian, M. J. Kochenderfer, and M. P. Owen, ‘‘Deep Neural Network Compression for Aircraft
Collision Avoidance Systems,’’ AIAA Journal of Guidance, Control, and Dynamics, vol. 42, no. 3,
pp. 598–608, 2019.

20. G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, ‘‘Reluplex: An Efficient SMT Solver
for Verifying Deep Neural Networks,’’ in International Conference on Computer Aided Verification, 2017.

21. Y. LeCun and C. Cortes, ‘‘MNIST Handwritten Digit Database,’’ 2010.

22. F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella, ‘‘Automated Verification of Neural Networks:
Advances, Challenges and Perspectives,’’ ArXiv, no. 1805.09938, 2018.

23. A. Lomuscio and L. Maganti, ‘‘An Approach to Reachability Analysis for Feed-Forward Relu Neural
Networks,’’ ArXiv, no. 1706.07351, 2017.

24. C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky, ‘‘The Stanford CoreNLP
Natural Language Processing Toolkit,’’ in Annual Meeting of the Association for Computational Linguis-
tics: System Demonstrations, 2014.

25. M. Mirman, T. Gehr, and M. Vechev, ‘‘Differentiable Abstract Interpretation for Provably Robust
Neural Networks,’’ in International Conference on Machine Learning (ICML), 2018.

26. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al., ‘‘Human-Level Control Through Deep Reinforcement Learning,’’
Nature, vol. 518, no. 7540, p. 529, 2015.

27. N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh, ‘‘Verifying Properties of
Binarized Deep Neural Networks,’’ 2018.

28. J. D. Olden and D. A. Jackson, ‘‘Illuminating the ‘‘Black Box’’: a Randomization Approach for
Understanding Variable Contributions in Artificial Neural Networks,’’ Ecological Modelling, vol. 154,
no. 1-2, pp. 135–150, 2002.

29. N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, ‘‘The Limitations of Deep
Learning in Adversarial Settings,’’ in IEEE European Symposium on Security and Privacy (EuroS&P),
2016.

algorithms for verifying deep neural networks 75

30. K. Pei, Y. Cao, J. Yang, and S. Jana, ‘‘Deepxplore: Automated Whitebox Testing of Deep Learning
Systems,’’ in Symposium on Operating Systems Principles, 2017.

31. A. Raghunathan, J. Steinhardt, and P. Liang, ‘‘Certified Defenses against Adversarial Examples,’’ in
International Conference on Learning Representations, 2018.

32. H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and P. Zhang, ‘‘A Convex Relaxation Barrier to Tight
Robust Verification of Neural Networks,’’ ArXiv, no. 1902.08722, 2019.

33. G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, ‘‘Fast and Effective Robustness Cer-
tification,’’ in Advances in Neural Information Processing Systems (NIPS), S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds., Curran Associates, 2018, pp. 10 825–
10 836.

34. G. Singh, T. Gehr, M. Puschel, and M. Vechev, ‘‘An Abstract Domain for Certifying Neural Networks,’’
in ACM Symposium on Principles of Programming Languages, 2019.

35. G. Singh, T. Gehr, M. Puschel, and M. Vechev, ‘‘Boosting Robustness Certification of Neural Net-
works,’’ in International Conference on Learning Representations, 2019.

36. Y. Sun, X. Huang, and D. Kroening, ‘‘Testing Deep Neural Networks,’’ ArXiv, no. 1803.04792, 2018.

37. Y. Tian, K. Pei, S. Jana, and B. Ray, ‘‘Deeptest: Automated Testing of Deep-Neural-Network-Driven
Autonomous Cars,’’ in International Conference on Software Engineering, 2018.

38. V. Tjeng, K. Xiao, and R. Tedrake, ‘‘Evaluating Robustness of Neural Networks with Mixed Integer
Programming,’’ ArXiv, no. 1711.07356, 2017.

39. S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, ‘‘Efficient Formal Safety Analysis of Neural
Networks,’’ ArXiv, no. 1809.08098, 2018.

40. S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, ‘‘Formal Security Analysis of Neural Networks
Using Symbolic Intervals,’’ in 27th USENIX Security Symposium (USENIX Security 18), 2018.

41. L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning, and I. Dhillon, ‘‘Towards Fast
Computation of Certified Robustness for ReLU Networks,’’ in International Conference on Machine
Learning (ICML), vol. 80, 2018.

42. T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel, ‘‘Evaluating the
Robustness of Neural Networks: An Extreme Value Theory Approach,’’ in International Conference
on Learning Representations, 2018.

43. E. Wong and Z. Kolter, ‘‘Provable Defenses against Adversarial Examples via the Convex Outer
Adversarial Polytope,’’ in International Conference on Machine Learning (ICML), 2018.

44. W. Xiang, H. Tran, and T. T. Johnson, ‘‘Output Reachable Set Estimation and Verification for Multi-
layer Neural Networks,’’ IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 11,
pp. 5777–5783, 2018.

45. W. Xiang, H. Tran, J. A. Rosenfeld, and T. T. Johnson, ‘‘Reachable Set Estimation and Safety Verifica-
tion for Piecewise Linear Systems with Neural Network Controllers,’’ in American Control Conference
(ACC), 2018.

46. W. Xiang, H.-D. Tran, and T. T. Johnson, ‘‘Reachable Set Computation and Safety Verification for
Neural Networks with ReLU Activations,’’ ArXiv, no. 1712.08163, 2017.

47. W. Xiang, H.-D. Tran, and T. T. Johnson, ‘‘Specification-Guided Safety Verification for Feedforward
Neural Networks,’’ ArXiv, no. 1812.06161, 2018.

48. W. Xiang, P. Musau, A. A. Wild, D. M. Lopez, N. Hamilton, X. Yang, J. Rosenfeld, and T. T. Johnson,
‘‘Verification for Machine Learning, Autonomy, and Neural Networks Survey,’’ ArXiv, no. 1810.01989,
2018.

49. P. Yang, J. Liu, J. Li, L. Chen, and X. Huang, ‘‘Analyzing Deep Neural Networks with Symbolic
Propagation: Towards Higher Precision and Faster Verification,’’ ArXiv Preprint ArXiv:1902.09866,
2019.

algorithms for verifying deep neural networks 76

50. H. Zhang, P. Zhang, and C.-J. Hsieh, ‘‘RecurJac: An Efficient Recursive Algorithm for Bounding
Jacobian Matrix of Neural Networks and Its Applications,’’ in AAAI Conference on Artificial Intelligence
(AAAI), 2019.

51. H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, ‘‘Efficient Neural Network Robustness
Certification with General Activation Functions,’’ in Advances in Neural Information Processing Systems
(NIPS), S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.,
Curran Associates, 2018, pp. 4944–4953.

52. Y. Zhang and Z. Zhang, ‘‘Dual Neural Network,’’ in Repetitive Motion Planning and Control of Redun-
dant Robot Manipulators. Springer, 2013, pp. 33–56.

	Introduction
	Problem Formulation
	Overview of Methods
	Preliminaries
	Reachability
	Primal Optimization
	Dual Optimization
	Search and Reachability
	Search and Optimization
	Comparison and Results
	Conclusion

